26 research outputs found

    Uso de minerales pesados en análisis de procedencia sedimentaria (aproximación en colombia)

    Get PDF
    El uso de minerales pesados en sucesiones siliciclásticas ha demostrado ser una poderosa herramienta para determinar la roca fuente de dichos detritos, además de ser ampliamente utilizada en la correlación estratigráfica de sucesiones con ausencia de registro bioestratigráfico. Petrográficamente es muy común encontrarlos, casi siempre en proporciones inferiores al 3% y es por ello que para su estudio se hace necesario concentrarlos. La técnica mas utilizada en arenitas es desagregarlas, luego con la fracción de arena fina a muy fina (0,063- 0,125mm), se separa la fracción densa mediante el uso de líquidos densos (ρ and gt;2,8). Múltiples factores pueden afectar las asociaciones de minerales pesados (efectos hidráulicos, diagenéticos, meteorización, etc.); es por ello que ésta técnica debe ser complementada con otras para obtener mejores resultados

    De la clase magistral a la escala natural

    Get PDF
    https://ciencia.lasalle.edu.co/simposios/1015/thumbnail.jp

    Inverse Modeling for MEG/EEG data

    Full text link
    We provide an overview of the state-of-the-art for mathematical methods that are used to reconstruct brain activity from neurophysiological data. After a brief introduction on the mathematics of the forward problem, we discuss standard and recently proposed regularization methods, as well as Monte Carlo techniques for Bayesian inference. We classify the inverse methods based on the underlying source model, and discuss advantages and disadvantages. Finally we describe an application to the pre-surgical evaluation of epileptic patients.Comment: 15 pages, 1 figur

    Embryonic cerebrospinal fluid in brain development: neural progenitor control

    Get PDF
    Due to the effort of several research teams across the world, today we have a solid base of knowledge on the liquid contained in the brain cavities, its composition, and biological roles. Although the cerebrospinal fluid (CSF) is among the most relevant parts of the central nervous system from the physiological point of view, it seems that it is not a permanent and stable entity because its composition and biological properties evolve across life. So, we can talk about different CSFs during the vertebrate life span. In this review, we focus on the CSF in an interesting period, early in vertebrate development before the formation of the choroid plexus. This specific entity is called “embryonic CSF.” Based on the structure of the compartment, CSF composition, origin and circulation, and its interaction with neuroepithelial precursor cells (the target cells) we can conclude that embryonic CSF is different from the CSF in later developmental stages and from the adult CSF. This article presents arguments that support the singularity of the embryonic CSF, mainly focusing on its influence on neural precursor behavior during development and in adult life

    Embryonic cerebrospinal fluid activates neurogenesis of neural precursors within the subventricular zone of the adult mouse brain

    Get PDF
    Producción CientíficaIntroduction: There is a nondeveloped neurogenic potential in the adult mammalian brain, which could be the basis for neuroregenerative strategies. Many research efforts have been made to understand the control mechanisms which regulate the transition from a neural precursor to a neuron in the adult brain. Embryonic cerebrospinal fluid (CSF) is a complex fluid which has been shown to play a key role in neural precursor behavior during development, working as a powerful neurogenic inductor. We tested if the neurogenic properties of embryonic CSF are able to increase the neurogenic activity of neuronal precursors from the subventricular zone (SVZ) in the brains of adult mice. Results: Our results show that mouse embryonic CSF significantly increases the neurogenic activity in precursor cells from adult brain SVZ. This intense neurogenic effect was specific for embryonic CSF and was not induced by adult CSF. Conclusions: Embryonic CSF is a powerful neurogenesis inductor in homologous neuronal precursors in the adult brain. This property of embryonic CSF could be a useful tool in neuroregeneration strategies

    Extracellular vesicles regulate purinergic signaling and epithelial sodium channel expression in renal collecting duct cells.

    Get PDF
    Contains fulltext : 232627.pdf (Publisher’s version ) (Open Access)Purinergic signaling regulates several renal physiological and pathophysiological processes. Extracellular vesicles (EVs) are nanoparticles released by most cell types, which, in non-renal tissues, modulate purinergic signaling. The aim of this study was to investigate the effect of EVs from renal proximal tubule (HK2) and collecting duct cells (HCD) on intra- and intersegment modulation of extracellular ATP levels, the underlying molecular mechanisms, and the impact on the expression of the alpha subunit of the epithelial sodium channel (αENaC). HK2 cells were exposed to HK2 EVs, while HCD cells were exposed to HK2 and HCD EVs. Extracellular ATP levels and αENaC expression were measured by chemiluminescence and qRT-PCR, respectively. ATPases in EV populations were identified by mass spectrometry. The effect of aldosterone was assessed using EVs from aldosterone-treated cells and urinary EVs (uEVs) from primary aldosteronism (PA) patients. HK2 EVs downregulated ectonucleoside-triphosphate-diphosphohydrolase-1 (ENTPD1) expression, increased extracellular ATP and downregulated αENaC expression in HCD cells. ENTPD1 downregulation could be attributed to increased miR-205-3p and miR-505 levels. Conversely, HCD EVs decreased extracellular ATP levels and upregulated αENaC expression in HCD cells, probably due to enrichment of 14-3-3 isoforms with ATPase activity. Pretreatment of donor cells with aldosterone or exposure to uEVs from PA patients enhanced the effects on extracellular ATP and αENaC expression. We demonstrated inter- and intrasegment modulation of renal purinergic signaling by EVs. Our findings postulate EVs as carriers of information along the renal tubules, whereby processes affecting EV release and/or cargo may impact on purinergically regulated processes
    corecore