597 research outputs found

    Prediksi Evolusi Diameter Aorta Berdasarkan Sinyal Trombus dari Magnetic Resonance Images pada Small Abdominal Aortic Aneurysms

    Get PDF
    Mempelajari gambar T1 dan T2 dari hasil pemeriksaan MR Imaging terhadap adanya trombus pada pasien Small Abdominal Aortic Aneurysms (SAAA) untuk mengetahui apakah sinyal trombus bisa dihubungkan dengan evolusi pembesaran diameter aorta, dan kemudian bisa memprediksi risiko pecahnya dinding aorta. Data diperoleh dari 16 pasien dengan SAAA. Gambar MR diperoleh dari Imager 3T (Trio TIM, Siemens Medical Solution, Jerman). Dalam protokol penelitian kami, gambar yang diambil adalah studi anatomi, gambar cine-MR, gambar T1/T2, gambar aliran darah, dan gambar setelah injeksi contrast agents. Manual tracing dilakukan untuk menentukan luas permukaan Aorta dan luas permukaan luminal guna menentukan luas permukaan trombus. Maksimum diameter aorta secara otomatis didapat dari manual tracing pada gambar T1. Parameter digunakan untuk mempelajari sinyal trombus adalah mean, median, standar deviasi, skewness dan kurtosis. Setiap parameter dihitung pada area thrombus, dan sinyal di otot digunakan untuk menormalisasikannya. Setelah itu, semua parameter akan dibandingkan dengan evolusi dari diameter aorta. Ditemukan 13 dari 16 pasien dengan SAAA memiliki trombus. Namun tidak ada korelasi antara sinyal trombus dengan evolusi dari diameter aorta (r sering kali kurang dari 0,3). Tapi beberapa parameter menunjukkan hubungan antara sinyal thrombus dan diameter maksimum (mean (r = 0318)), median (r = 0,318), skewness (r = 0304)) atau dengan evolusi diameter maksimum (mean (r = 0512)). Dapat disimpulkan bahwa perbandingan kategori trombus yang kami kalkulasikan secara matematik dengan kategori thrombus secara visualisasi mencapai 81% tingkat kesesuaian, tapi kita tidak bisa menggunakan sinyal trombus sendiri sebagai parameter untuk memprediksi evolusi dari diameter aorta

    Plant RNases T2, but not Dicer-like proteins, are major players of tRNA-derived fragments biogenesis

    Get PDF
    RNA fragments deriving from tRNAs (tRFs) exist in all branches of life and the repertoire of their biological functions regularly increases. Paradoxically, their biogenesis remains unclear. The human RNase A, Angiogenin, and the yeast RNase T2, Rny1p, generate long tRFs after cleavage in the anticodon region. The production of short tRFs after cleavage in the D or T regions is still enigmatic. Here, we show that the Arabidopsis Dicer-like proteins, DCL1-4, do not play a major role in the production of tRFs. Rather, we demonstrate that the Arabidopsis RNases T2, called RNS, are key players of both long and short tRFs biogenesis. Arabidopsis RNS show specific expression profiles. In particular, RNS1 and RNS3 are mainly found in the outer tissues of senescing seeds where they are the main endoribonucleases responsible of tRNA cleavage activity for tRFs production. In plants grown under phosphate starvation conditions, the induction of RNS1 is correlated with the accumulation of specific tRFs. Beyond plants, we also provide evidence that short tRFs can be produced by the yeast Rny1p and that, in vitro, human RNase T2 is also able to generate long and short tRFs. Our data suggest an evolutionary conserved feature of these enzymes in eukaryotes

    'Magic coins' and 'magic squares': the discovery of astrological sigils in the Oldenburg Letters

    Get PDF
    Enclosed in a 1673 letter to Henry Oldenburg were two drawings of a series of astrological sigils, coins and amulets from the collection of Strasbourg mathematician Julius Reichelt (1637–1719). As portrayals of particular medieval and early modern sigils are relatively rare, this paper will analyse the role of these medals in medieval and early modern medicine, the logic behind their perceived efficacy, and their significance in early modern astrological and cabalistic practice. I shall also demonstrate their change in status in the late seventeenth century from potent magical healing amulets tied to the mysteries of the heavens to objects kept in a cabinet for curiosos. The evolving perception of the purpose of sigils mirrored changing early modern beliefs in the occult influences of the heavens upon the body and the natural world, as well as the growing interests among virtuosi in collecting, numismatics and antiquities

    Proton Motive Force-Dependent Hoechst 33342 Transport by the ABC Transporter LmrA of Lactococcus lactis

    Get PDF
    The fluorescent compound Hoechst 33342 is a substrate for many multidrug resistance (MDR) transporters and is widely used to characterize their transport activity. We have constructed mutants of the adenosine triphosphate (ATP) binding cassette (ABC)-type MDR transporter LmrA of Lactococcus lactis that are defective in ATP hydrolysis. These mutants and wild-type LmrA exhibited an atypical behavior in the Hoechst 33342 transport assay. In membrane vesicles, Hoechst 33342 transport was shown to be independent of the ATPase activity of LmrA, and it was not inhibited by orthovanadate but sensitive to uncouplers that collapse the proton gradient and to N,N'-dicyclohexylcarbodiimide, an inhibitor of the F0F1-ATPase. In contrast, transport of Hoechst 33342 by the homologous, heterodimeric MDR transporter LmrCD showed a normal ATP dependence and was insensitive to uncouplers of the proton gradient. With intact cells, expression of LmrA resulted in an increased rate of Hoechst 33342 influx while LmrCD caused a decrease in the rate of Hoechst 33342 influx. Cellular toxicity assays using a triple knockout strain, i.e., L. lactis ΔlmrA ΔlmrCD, demonstrate that expression of LmrCD protects cells against the growth inhibitory effects of Hoechst 33342, while in the presence of LmrA, cells are more susceptible to Hoechst 33342. Our data demonstrate that the LmrA-mediated Hoechst 33342 transport in membrane vesicles is influenced by the transmembrane pH gradient due to a pH-dependent partitioning of Hoechst 33342 into the membrane.

    Stabilities of nanohydrated thymine radical cations: insights from multiphoton ionization experiments and ab initio calculations

    Get PDF
    Multi-photon ionization experiments have been carried out on thymine-water clusters in the gas phase. Metastable H2O loss from T+(H2O)n was observed at n ≥ 3 only. Ab initio quantum-chemical calculations of a large range of optimized T+(H2O)n conformers have been performed up to n = 4, enabling binding energies of water to be derived. These decrease smoothly with n, consistent with the general trend of increasing metastable H2O loss in the experimental data. The lowest-energy conformers of T+(H2O)3 and T+(H2O)4 feature intermolecular bonding via charge-dipole interactions, in contrast with the purely hydrogen-bonded neutrals. We found no evidence for a closed hydration shell at n = 4, also contrasting with studies of neutral clusters

    Mechanical integrity of thin inorganic coatings on polymer substrates under quasi-static, thermal and fatigue loadings

    Get PDF
    The interplay between residual stress state, cohesive and adhesive properties of coatings on substrates is reviewed in this article. Attention is paid to thin inorganic coatings on polymers, characterized by a very high hygro-thermo-mechanical contrast between the brittle and stiff coating and the compliant and soft substrate. An approach to determine the intrinsic, thermal and hygroscopic contributions to the coating residual stress is detailed. The critical strain for coating failure, coating toughness and coating/substrate interface shear strength are derived from the analysis of progressive coating cracking under strain. Electro-fragmentation and electro-fatigue tests in situ in a microscope are described. These methods enable reproducing the thermo-mechanical loads present during processing and service life, hence identifying and modeling the critical conditions for failure. Several case studies relevant to food and pharmaceutical packaging, flexible electronics and thin film photovoltaic devices are discussed to illustrate the benefits and limits of the present methods and models. © 2010 Elsevier B.V. All rights reserved

    Interannual variability (2000–2013) of mesopelagic and bathypelagic particle fluxes in relation to variable sea ice cover in the eastern Fram Strait

    Get PDF
    The Fram Strait connects the Atlantic and Arctic Oceans and is a key conduit for sea ice advected southward by the Transpolar Drift and northward inflow of warm Atlantic Waters. Continued sea ice decline and “Atlantification” are expected to influence pelagic–benthic coupling in the Fram Strait and Arctic as a whole. However, interannual variability and the impact of changing ice conditions on deepwater particle fluxes in the Arctic remain poorly characterized. Here, we present long-term sediment trap records (2000–2013) from mesopelagic (200 m) and bathypelagic (2,300 m) depths at two locations (HGIV and HGN) in the Fram Strait subjected to variable ice conditions. Sediment trap catchment areas were estimated and combined with remote sensing data and a high-resolution model to determine the ice cover, chlorophyll concentration, and prevailing stratification regimes. Surface chlorophyll increased between 2000 and 2013, but there was no corresponding increase in POC flux, suggesting a shift in the efficiency of the biological carbon pump. A decrease in particulate biogenic Si flux, %opal, Si:POC, and Si:PIC at mesopelagic depths indicates a shift away from diatom-dominated export as a feasible explanation. Biogenic components accounted for 72% ± 16% of mass flux at 200 m, but were reduced to 34% ± 11% at 2,300 m, substituted by a residual (lithogenic) material. Total mass fluxes of biogenic components, including POC, were higher in the bathypelagic. Biomarkers and ∂13C values suggest both lateral advection and ice-rafted material contribute to benthic carbon input, although constraining their precise contribution remains challenging. The decadal time series was used to describe two end-members of catchment area conditions representing the maximum temperatures of Atlantic inflow water in 2005 at HGIV and high ice coverage and a meltwater stratification regime at HGN in 2007. Despite similar chlorophyll concentrations, bathypelagic POC flux, Si flux, Si:POC, and Si:PIC were higher and POC:PIC was lower in the high-ice/meltwater regime. Our findings suggest that ice concentration and associated meltwater regimes cause higher diatom flux. It is possible this will increase in the future Arctic as meltwater regimes increase, but it is likely to be a transient feature that will disappear when no ice remains
    corecore