31 research outputs found

    Complete genome sequence of Spirosoma linguale type strain (1).

    Get PDF
    Spirosoma linguale Migula 1894 is the type species of the genus. S. linguale is a free-living and non-pathogenic organism, known for its peculiar ringlike and horseshoe-shaped cell morphology. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is only the third completed genome sequence of a member of the family Cytophagaceae. The 8,491,258 bp long genome with its eight plasmids, 7,069 protein-coding and 60 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Characterization Of Microstrip Transmission Lines At Ir Frequencies - Modeling, Fabrication And Measurements

    No full text
    We report the complete characterization of microstrip lines at an infrared frequency of 28.3 THz (10.6-pm wavelength) through modeling, fabrication, and measurement. The transmission-line parameters of interest can not be directly measured at infrared frequencies - the only measurable quantity is the voltage response of the antenna-coupled bolometric sensor. We validate the computational approach for transmission-line parameters by verifying the computed and measured response of the antenna connected to microstrip lines of different lengths. This also allows us to extend these calculations to explore various configurations and identify design trends. © 2008 Wiley Periodicals, Inc

    Phase Characterization Of Reflectarray Elements At Infrared

    No full text
    The feasibility of a square-patch reflectarray element design is demonstrated at a frequency of 28.3 THz in the infrared (10.6 micrometer free-space wavelength) for the first time. Fabrication of arrays of various patch sizes was performed using electron-beam lithography, and the reflected phase as a function of patch size was characterized using an infrared interferometer. A numerical model for the design of these reflectarray elements was developed incorporating measured values of frequency-dependent material properties, and a comparison of computed and measured phase shows close agreement. © 2007 IEEE

    Design Of An Mom Diode-Coupled Frequency-Selective Surface

    No full text
    This article presents the design of a slot-antenna-based frequency selective surface coupled with metal-oxide-metal diodes integrated into the structure. This design takes advantage of a single self-aligned patterning step using shadow evaporation. The structure is optimized at 10.6 μm to have less than 2% reflection with 70% of the incident energy dissipated into the oxide layer. Initial experimental results conducted with e-beam lithography are presented. The fabricated structure is shown to produce a polarization sensitive unbiased DC current. This design will be useful for both infrared sensing and imaging as well as direct conversion of thermal energy. © 2012 Wiley Periodicals, Inc

    Design And Demonstration Of An Infrared Meanderline Phase Retarder

    No full text
    We compare design and measurements for a single-layer meanderline quarter-wave phase retarder, operating across the wavelength range from 8 to 12 micrometers (25 to 37.5 THz) in the infrared. The structure was fabricated using direct-write electron-beam lithography. With measured frequency-dependent material properties incorporated into a periodic-moment-method model, reasonable agreement is obtained for the spectral dependence of axial ratio and phase delay. As expected from theory, the single-layer meanderline design has relatively low throughput (23%), but with extension to multiple-layer designs, the meanderline approach offers significant potential benefits as compared to conventional birefringent crystalline waveplates in terms of spectral bandwidth, angular bandwidth, and cost. Simple changes in the lithographic geometry will allow designs to be developed for specific phase retardations over specified frequency ranges in the infrared, terahertz, or millimeter-wave bands, where custom-designed waveplates are not commercially available. © 2007 IEEE
    corecore