354 research outputs found

    Uncertainties and opportunities in delivering environmentally sustainable surgery:the surgeons' view

    Get PDF
    Surgery is a carbon‐heavy activity and creates a high volume of waste. Surgical teams around the world want to deliver more environmentally sustainable surgery but are unsure what to do and how to create change. There are many interventions available, but resources and time are limited. Capital investment into healthcare and engagement of senior management are challenging. However, frontline teams can change behaviours and drive wider change. Patients have a voice here too, as they would like to ensure their surgery does not harm their local community but are concerned about the effects on them when changes are made. Environmentally sustainable surgery is at the start of its journey. Surgeons need to rapidly upskill their generic knowledge base, identify which measures they can implement locally and take part in national research programmes. Surgical teams in the NHS have the chance to create a world‐leading programme that can bring change to hospitals around the world. This article provides an overview of how surgeons see the surgical team being involved in environmentally sustainable surgery

    Independent Ion Migration in Suspensions of Strongly Interacting Charged Colloidal Spheres

    Full text link
    We report on sytematic measurements of the low frequency conductivity in aequous supensions of highly charged colloidal spheres. System preparation in a closed tubing system results in precisely controlled number densities between 1E16/m3 and 1E19/m^3 (packing fractions between 1E-7 and 1E-2) and electrolyte concentrations between 1E-7 and 1E-3 mol/l. Due to long ranged Coulomb repulsion some of the systems show a pronounced fluid or crystalline order. Under deionized conditions we find s to depend linearily on the packing fraction with no detectable influence of the phase transitions. Further at constant packing fraction s increases sublinearily with increasing number of dissociable surface groups N. As a function of c the conductivity shows pronounced differences depending on the kind of electrolyte used. We propose a simple yet powerful model based on independent migration of all species present and additivity of the respective conductivity contributions. It takes account of small ion macro-ion interactions in terms of an effectivly transported charge. The model successfully describes our qualitatively complex experimental observations. It further facilitates quantitative estimates of conductivity over a wide range of particle and experimental parameters.Comment: 32 pages, 17 figures, 2 tables, Accepted by Physical Review

    The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections

    Get PDF
    Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013 The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate cocaine-induced changes in the concentrations of different redox forms of cysteine (Cys) and homocysteine (Hcy), and products of anaerobic Cys metabolism, i.e., labile, reduced sulfur (LS) in the rat plasma. The above-mentioned parameters were determined after i.p. acute and subchronic cocaine treatment as well as following i.v. cocaine self-administration using the yoked procedure. Additionally, Cys, Hcy, and LS levels were measured during the 10-day extinction training in rats that underwent i.v. cocaine administration. Acute i.p. cocaine treatment increased the total and protein-bound Hcy contents, decreased LS, and did not change the concentrations of Cys fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered the total and protein-bound Cys concentrations while LS level was unchanged. Cocaine self-administration enhanced the total and protein-bound Hcy levels, decreased LS content, and did not affect the Cys fractions. On the other hand, yoked cocaine infusions did not alter the concentration of Hcy fractions while decreased the total and protein-bound Cys and LS content. This extinction training resulted in the lack of changes in the examined parameters in rats with a history of cocaine self-administration while in the yoked cocaine group an increase in the plasma free Cys fraction and LS was seen. Our results demonstrate for the first time that cocaine does evoke significant changes in homeostasis of thiol amino acids Cys and Hcy, and in some products of anaerobic Cys metabolism, which are dependent on the way of cocaine administration

    Active Site Design in a Chemzyme: Development of a Highly Asymmetric and Remarkably Temperature-Independent Catalyst for the Imino Aldol Reaction**

    Get PDF
    The asymmetric aldol reaction of an enolate or enolate equivalent with an imine is a reaction of established synthetic importance for the synthesis of chiral amines in general and bamino esters in particular. [1] The development of chiral catalysts for this reaction has proven to be a difficult task and had eluded all attempts until recently when Kobayashi and co-workers examined imines derived from o-aminophenol. [2±4] Their method involves the catalysis of the reactions of these imines and ketene acetals with a catalyst generated from zirconium(iv) tert-butoxide and two equivalents of (R)-6,6'-dibromoBINOL (BINOL 1,1'-binaphth-2-ol). Our interest in the synthesis of chiral amines led us to investigate the use of VAPOL-derived catalysts A comparison of catalysts prepared from BINOL, 6,6'-dibromoBINOL and VAPOL ligands on the asymmetric induction in the reaction of the phenyl-substituted imine 1 and acetal 2 is summarized in [2] The VAPOL catalyst could be prepared in either methylene chloride or toluene, but for solubility reasons, the BINOL catalysts were prepared in methylene chloride. The VAPOL and Br 2 BINOL catalysts were superior to the BINOL catalyst at À 45 8C. The asymmetric induction dropped for the Br 2 BINOL catalyst when the temperature was raised from À 45 8C to room temperature, but curiously, the asymmetric induction for the VAPOL catalyst was essentially unchanged over this same temperature range. Only a small drop-off is noted (85 % ee) when the temperature is raised to 41 8C and the substrate-to-catalyst ratio is raised to 200:1 (entry 5). Both the R enantiomers of BINOL and Br 2 BINOL ligands give the R enantiomer of the product 3, whereas with the VAPOL ligand, it is the S enantiomer that gives the R product. This reversal is not unexpected given the structures of the ligands where the zirconium is in the minor groove of the BINOL ligands and in the major groove of the VAPOL ligand. [2g] It is clear from the examination of space-filling CPK models that it is possible to bind two VAPOL ligands to one zirconium atom but only with a facial arrangement of the four oxygen atoms as is illustratred by structure 6 in Scheme 1. This is supported by 1 H NMR experiments on a catalyst generated from zirconium tetraisopropoxide and VAPOL in the presence of two equivalents of N-methyl imidiazole. A clean spectrum is only observed with two equivalents of VAPOL relative to zirconium and the spectrum is consistent with a single C 2 -symmetrical species were performed by using the TEXSAN [13] crystallographic software package. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-153832. Copies of the data can be obtained free of charge on application to CCDC

    Education and training policies for research integrity: insights from a focus group study

    Get PDF
    Education is important for fostering research integrity (RI). Although RI training is increasingly provided, there is little knowledge on how research stakeholders view institutional RI education and training policies. Following a constructivist approach, we present insights about research stakeholders’ views and experiences regarding how research institutions can develop and implement RI education and training policies. We conducted thirty focus groups, engaging 147 participants in eight European countries. Using a mixed deductive-inductive thematic analysis, we identified five themes: (1) RI education should be available to all; (2) education and training approaches and goals should be tailored; (3) motivating trainees is essential; (4) both formal and informal educational formats are necessary; and (5) institutions should take into account various individual, institutional, and system-of-science factors when implementing RI education. Our findings suggest that institutions should make RI education attractive for all and tailor training to disciplinary-specific contexts.Horizon 2020(H2020)824481Merit, Expertise and Measuremen

    Characterization of Leishmania donovani MCM4: Expression Patterns and Interaction with PCNA

    Get PDF
    Events leading to origin firing and fork elongation in eukaryotes involve several proteins which are mostly conserved across the various eukaryotic species. Nuclear DNA replication in trypanosomatids has thus far remained a largely uninvestigated area. While several eukaryotic replication protein orthologs have been annotated, many are missing, suggesting that novel replication mechanisms may apply in this group of organisms. Here, we characterize the expression of Leishmania donovani MCM4, and find that while it broadly resembles other eukaryotes, noteworthy differences exist. MCM4 is constitutively nuclear, signifying that, unlike what is seen in S.cerevisiae, varying subcellular localization of MCM4 is not a mode of replication regulation in Leishmania. Overexpression of MCM4 in Leishmania promastigotes causes progress through S phase faster than usual, implicating a role for MCM4 in the modulation of cell cycle progression. We find for the first time in eukaryotes, an interaction between any of the proteins of the MCM2-7 (MCM4) and PCNA. MCM4 colocalizes with PCNA in S phase cells, in keeping with the MCM2-7 complex being involved not only in replication initiation, but fork elongation as well. Analysis of a LdMCM4 mutant indicates that MCM4 interacts with PCNA via the PIP box motif of MCM4 - perhaps as an integral component of the MCM2-7 complex, although we have no direct evidence that MCM4 harboring a PIP box mutation can still functionally associate with the other members of the MCM2-7 complex- and the PIP box motif is important for cell survival and viability. In Leishmania, MCM4 may possibly help in recruiting PCNA to chromatin, a role assigned to MCM10 in other eukaryotes

    Encephalomyocarditis virus may use different pathways to initiateinfection of primary human cardiomyocytes

    Get PDF
    Encephalomyocarditis virus (EMCV) caninfect a wide range of vertebrate species including swineand non-human primates, but few data are available forhumans. We therefore wanted to gain further insight intothe mechanisms involved in EMCV infection of humancells. For this purpose, we analyzed the permissiveness ofprimary human cardiomyocytes towards two strains ofEMCV; a pig myocardial strain (B279/95) and a rat strain(1086C). In this study, we show that both strains productivelyinfect primary human cardiomyocytes and inducecomplete cytolysis. Binding and infection inhibitionexperiments indicated that attachment and infection areindependent of sialic acid and heparan sulfate for B279/95and dependent for 1086C. Sequence comparison betweenthe two strains and three-dimensional analysis of the capsidrevealed that six of the seven variable residues are surfaceexposed,suggesting a role for these amino acids in binding.Moreover, analysis of variants isolated from the 1086Cstrain revealed the importance of lysine 231 of VP1 in theattachment of EMCV to cell-surface sialic acid residues.Together, these results show a potential for EMCV strainsto use at least two different binding possibilities to initiateinfection and provide new insights into the mechanismsinvolved in primary human cell recognition by EMCV

    Multiple Regulatory Mechanisms to Inhibit Untimely Initiation of DNA Replication Are Important for Stable Genome Maintenance

    Get PDF
    Genomic instability is a hallmark of human cancer cells. To prevent genomic instability, chromosomal DNA is faithfully duplicated in every cell division cycle, and eukaryotic cells have complex regulatory mechanisms to achieve this goal. Here, we show that untimely activation of replication origins during the G1 phase is genotoxic and induces genomic instability in the budding yeast Saccharomyces cerevisiae. Our data indicate that cells preserve a low level of the initiation factor Sld2 to prevent untimely initiation during the normal cell cycle in addition to controlling the phosphorylation of Sld2 and Sld3 by cyclin-dependent kinase. Although untimely activation of origin is inhibited on multiple levels, we show that deregulation of a single pathway can cause genomic instability, such as gross chromosome rearrangements (GCRs). Furthermore, simultaneous deregulation of multiple pathways causes an even more severe phenotype. These findings highlight the importance of having multiple inhibitory mechanisms to prevent the untimely initiation of chromosome replication to preserve stable genome maintenance over generations in eukaryotes
    corecore