3,177 research outputs found

    Pão são, uma alternativa ao pão tradicional

    Get PDF
    Hoje em dia o pão faz parte da cultura e dos hábitos alimentares da maioria dos povos, podendo considerar-se um dos alimentos mais consumidos do mundo. O pão é feito a partir de uma mistura simples de farinha, água, sal e fermento, sendo um alimento extremamente versátil e com uma enorme digestibilidade [1]. Desde que foi produzido pela primeira vez há milhares de anos, foi sofrendo evoluções quer ao nível dos métodos de produção, quer ao nível da sua constituição encontrando-se nos dias de hoje uma grande diversidade de pães no mercado. Os objectivos deste trabalho foram comparar nutricionalmente e sensorialmente um pão classificado como especial, o Pão São, um produto recente no mercado Português. Nutricionalmente o Pão São revelou ser um pão com elevado valor nutricional, apresentando um baixo teor de sal (0.4%, cerca de metade do pão tradicional), sendo uma boa fonte de ómega 3 (0.67%), fibras e proteínas quando comparado com o pão tradicional. Estas diferenças devem-se sobretudo à grande variedade de matérias-primas seleccionadas na elaboração do Pão São, nomeadamente a mistura de farinhas (farinhas de trigo tipo 65 e 150 e farinha de centeio tipo 70), flocos de aveia, sementes de girassol e linhaça, soja, extractos de óleo de peixe rico em ómega 3, malte e proteína de leite. Dos resultados obtidos da análise sensorial, realizada por um painel de 40 provadores não treinados com idades compreendidas entre os 7 e os 63 anos, verificou-se que os pães tradicionais da região de comercialização mais próxima do Pão São foram os preferidos pelos provadores, destacando-se pelo seu sabor a lenha e a pão, e pela sua elasticidade. O Pão São foi avaliado como um pão mais denso, apresentando um sabor mais intenso a fermentado. Com a realização deste trabalho foi possível concluir que o Pão São é um pão nutritivo e saudável, sendo actualmente recomendado pela Fundação Portuguesa de Cardiologia. No entanto sobre o ponto de sensorial o consumidor aprecia e prefere o pão tradicional

    Simplest relationship between local field potential and intracellular signals in layered neural tissue.

    Get PDF
    The relationship between the extracellularly measured electric field potential resulting from synaptic activity in an ensemble of neurons and intracellular signals in these neurons is an important but still open question. Based on a model neuron with a cylindrical dendrite and lumped soma, we derive a formula that substantiates a proportionality between the local field potential and the total somatic transmembrane current that emerges from the difference between the somatic and dendritic membrane potentials. The formula is tested by intra- and extracellular recordings of evoked synaptic responses in hippocampal slices. Additionally, the contribution of different membrane currents to the field potential is demonstrated in a two-population mean-field model. Our formalism, which allows for a simple estimation of unknown dendritic currents directly from somatic measurements, provides an interpretation of the local field potential in terms of intracellularly measurable synaptic signals. It is also applicable to the study of cortical activity using two-compartment neuronal population models

    Cerebrospinal Fluid Inflammatory Biomarkers Reflect Clinical Severity in Huntington's Disease

    Get PDF
    INTRODUCTION: Immune system activation is involved in Huntington’s disease (HD) pathogenesis and biomarkers for this process could be relevant to study the disease and characterise the therapeutic response to specific interventions. We aimed to study inflammatory cytokines and microglial markers in the CSF of HD patients. METHODS: CSF TNF-α, IL-1β, IL-6, IL-8, YKL-40, chitotriosidase, total tau and neurofilament light chain (NFL) from 23 mutation carriers and 14 healthy controls were assayed. RESULTS: CSF TNF-α and IL-1β were below the limit of detection. Mutation carriers had higher YKL-40 (p = 0.003), chitotriosidase (p = 0.015) and IL-6 (p = 0.041) than controls. YKL-40 significantly correlated with disease stage (p = 0.007), UHDRS total functional capacity score (r = -0.46, p = 0.016), and UHDRS total motor score (r = 0.59, p = 4.5*10−4) after adjustment for age. CONCLUSION: YKL-40 levels in CSF may, after further study, come to have a role as biomarkers for some aspects of HD. Further investigation is needed to support our exploratory findings

    Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington's disease: a retrospective cohort analysis

    Get PDF
    BACKGROUND: Blood biomarkers of neuronal damage could facilitate clinical management of and therapeutic development for Huntington's disease. We investigated whether neurofilament light protein NfL (also known as NF-L) in blood is a potential prognostic marker of neurodegeneration in patients with Huntington's disease. METHODS: We did a retrospective analysis of healthy controls and carriers of CAG expansion mutations in HTT participating in the 3-year international TRACK-HD study. We studied associations between NfL concentrations in plasma and clinical and MRI neuroimaging findings, namely cognitive function, motor function, and brain volume (global and regional). We used random effects models to analyse cross-sectional associations at each study visit and to assess changes from baseline, with and without adjustment for age and CAG repeat count. In an independent London-based cohort of 37 participants (23 HTT mutation carriers and 14 controls), we further assessed whether concentrations of NfL in plasma correlated with those in CSF. FINDINGS: Baseline and follow-up plasma samples were available from 97 controls and 201 individuals carrying HTT mutations. Mean concentrations of NfL in plasma at baseline were significantly higher in HTT mutation carriers than in controls (3·63 [SD 0·54] log pg/mL vs 2·68 [0·52] log pg/mL, p<0·0001) and the difference increased from one disease stage to the next. At any given timepoint, NfL concentrations in plasma correlated with clinical and MRI findings. In longitudinal analyses, baseline NfL concentration in plasma also correlated significantly with subsequent decline in cognition (symbol-digit modality test r=–0·374, p<0·0001; Stroop word reading r=–0·248, p=0·0033), total functional capacity (r=–0·289, p=0·0264), and brain atrophy (caudate r=0·178, p=0·0087; whole-brain r=0·602, p<0·0001; grey matter r=0·518, p<0·0001; white matter r=0·588, p<0·0001; and ventricular expansion r=–0·589, p<0·0001). All changes except Stroop word reading and total functional capacity remained significant after adjustment for age and CAG repeat count. In 104 individuals with premanifest Huntington's disease, NfL concentration in plasma at baseline was associated with subsequent clinical onset during the 3-year follow-up period (hazard ratio 3·29 per log pg/mL, 95% CI 1·48–7·34, p=0·0036). Concentrations of NfL in CSF and plasma were correlated in mutation carriers (r=0·868, p<0·0001). INTERPRETATION: NfL in plasma shows promise as a potential prognostic blood biomarker of disease onset and progression in Huntington's disease

    Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers

    Get PDF
    This work was supported by the Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), grants E-26/202.974/2015 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grants 229755/2013-5, Brazil. LMLB is a senior research fellow of CNPq and Faperj. NG acknowledged support from the Wellcome Trust (Trust (097377, 101873, 200208) and MRC Centre for Medical Mycology (MR/N006364/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensis MR-1

    Get PDF
    BackgroundEtrA in Shewanella oneidensis MR-1, a model organism for study of adaptation to varied redox niches, shares 73.6% and 50.8% amino acid sequence identity with the oxygen-sensing regulators Fnr in E. coli and Anr in Pseudomonas aeruginosa, respectively; however, its regulatory role of anaerobic metabolism in Shewanella spp. is complex and not well understood.ResultsThe expression of the nap genes, nrfA, cymA and hcp was significantly reduced in etrA deletion mutant EtrA7-1; however, limited anaerobic growth and nitrate reduction occurred, suggesting that multiple regulators control nitrate reduction in this strain. Dimethyl sulfoxide (DMSO) and fumarate reductase gene expression was down-regulated at least 2-fold in the mutant, which, showed lower or no reduction of these electron acceptors when compared to the wild type, suggesting both respiratory pathways are under EtrA control. Transcript analysis further suggested a role of EtrA in prophage activation and down-regulation of genes implicated in aerobic metabolism.ConclusionIn contrast to previous studies that attributed a minor regulatory role to EtrA in Shewanella spp., this study demonstrates that EtrA acts as a global transcriptional regulator and, in conjunction with other regulators, fine-tunes the expression of genes involved in anaerobic metabolism in S. oneidensis strain MR-1. Transcriptomic and sequence analyses of the genes differentially expressed showed that those mostly affected by the mutation belonged to the "Energy metabolism" category, while stress-related genes were indirectly regulated in the mutant possibly as a result of a secondary perturbation (e.g. oxidative stress, starvation). We also conclude based on sequence, physiological and expression analyses that this regulator is more appropriately termed Fnr and recommend this descriptor be used in future publications

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus
    corecore