1,087 research outputs found

    Non-extensive statistics and the stellar polytrope index

    Full text link
    We use physical constrains imposed from the H-Theorem and from the negative nature of the heat capacity of self-gravitating thermodynamically isolated systems to investigate some possible limits on the stellar polytrope index nn within the domain of a classical non-extensive kinetic theory.Comment: 4 pages, 2 figures, LaTe

    Constraining the dark energy with galaxy clusters X-ray data

    Full text link
    The equation of state characterizing the dark energy component is constrained by combining Chandra observations of the X-ray luminosity of galaxy clusters with independent measurements of the baryonic matter density and the latest measurements of the Hubble parameter as given by the HST key project. By assuming a spatially flat scenario driven by a "quintessence" component with an equation of state px=ωρxp_x = \omega \rho_x we place the following limits on the cosmological parameters ω\omega and Ωm\Omega_{\rm{m}}: (i) −1≀ω≀−0.55-1 \leq \omega \leq -0.55 and Ωm=0.32−0.014+0.027\Omega_{\rm m} = 0.32^{+0.027}_{-0.014} (1σ\sigma) if the equation of state of the dark energy is restricted to the interval −1≀ω<0-1 \leq \omega < 0 (\emph{usual} quintessence) and (ii) ω=−1.29−0.792+0.686\omega = -1.29^{+0.686}_{-0.792} and Ωm=0.31−0.034+0.037\Omega_{\rm{m}} = 0.31^{+0.037}_{-0.034} (1σ1\sigma) if ω\omega violates the null energy condition and assume values <−1< -1 (\emph{extended} quintessence or ``phantom'' energy). These results are in good agreement with independent studies based on supernovae observations, large-scale structure and the anisotropies of the cosmic background radiation.Comment: 6 pages, 4 figures, LaTe

    Negative heat capacity and non-extensive kinetic theory

    Full text link
    The negative nature of the heat capacity CVC_V of thermodynamically isolated self-gravitating systems is rediscussed in the framework of a non-extensive kinetic theory. It is found that the dependence of CVC_V on the non-extensive parameter qq gives rise to a negative branch with the critical value corresponding to q=5/3q = 5/3 (CV→−∞C_V\to - \infty).Comment: 7 pages, 1 figure, revised version to appear in Phys. Lett.

    CDM Accelerating Cosmology as an Alternative to LCDM model

    Full text link
    A new accelerating cosmology driven only by baryons plus cold dark matter (CDM) is proposed in the framework of general relativity. In this model the present accelerating stage of the Universe is powered by the negative pressure describing the gravitationally-induced particle production of cold dark matter particles. This kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the Λ\LambdaCDM model. For a spatially flat Universe, as predicted by inflation (Ωdm+Ωbaryon=1\Omega_{dm}+\Omega_{baryon}=1), it is found that the effectively observed matter density parameter is Ωmeff=1−α\Omega_{meff} = 1- \alpha, where α\alpha is the constant parameter specifying the CDM particle creation rate. The supernovae test based on the Union data (2008) requires α∌0.71\alpha\sim 0.71 so that Ωmeff∌0.29\Omega_{meff} \sim 0.29 as independently derived from weak gravitational lensing, the large scale structure and other complementary observations.Comment: 6 pages, 3 figure

    Fragmentation Experiment and Model for Falling Mercury Drops

    Full text link
    The experiment consists of counting and measuring the size of the many fragments observed after the fall of a mercury drop on the floor. The size distribution follows a power-law for large enough fragments. We address the question of a possible crossover to a second, different power-law for small enough fragments. Two series of experiments were performed. The first uses a traditional film photographic camera, and the picture is later treated on a computer in order to count the fragments and classify them according to their sizes. The second uses a modern digital camera. The first approach has the advantage of a better resolution for small fragment sizes. The second, although with a poorer size resolution, is more reliable concerning the counting of all fragments up to its resolution limit. Both together clearly indicate the real existence of the quoted crossover. The model treats the system microscopically during the tiny time interval when the initial drop collides with the floor. The drop is modelled by a connected cluster of Ising spins pointing up (mercury) surrounded by Ising spins pointing down (air). The Ising coupling which tends to keep the spins segregated represents the surface tension. Initially the cluster carries an extra energy equally shared among all its spins, corresponding to the coherent kinetic energy due to the fall. Each spin which touches the floor loses its extra energy transformed into a thermal, incoherent energy represented by a temperature used then to follow the dynamics through Monte Carlo simulations. Whenever a small piece becomes disconnected from the big cluster, it is considered a fragment, and counted. The results also indicate the existence of the quoted crossover in the fragment-size distribution.Comment: 6 pages, 3 figure

    Hole spin polarization in GaAlAs:Mn structures

    Full text link
    A self-consistent calculation of the electronic properties of GaAlAs:Mn magnetic semiconductor quantum well structures is performed including the Hartree term and the sp-d exchange interaction with the Mn magnetic moments. The spin polarization density is obtained for several structure configurations. Available experimental results are compared with theory.Comment: 4 page

    Nonextensivity in Geological Faults?

    Full text link
    Geological fault systems, as the San Andreas fault (SAF) in USA, constitute typical examples of self-organizing systems in nature. In this paper, we have considered some geophysical properties of the SAF system to test the viability of the nonextensive models for earthquakes developed in [Phys. Rev. E {\bf 73}, 026102, 2006]. To this end, we have used 6188 earthquakes events ranging in the magnitude interval 2<m<82 < m < 8 that were taken from the Network Earthquake International Center catalogs (NEIC, 2004-2006) and the Bulletin of the International Seismological Centre (ISC, 1964-2003). For values of the Tsallis nonextensive parameter q≃1.68q \simeq 1.68, it is shown that the energy distribution function deduced in above reference provides an excellent fit to the NEIC and ISC SAF data.Comment: 9 pages, 1 figure, standard LaTeX fil

    Thermodynamics, Spectral Distribution and the Nature of Dark Energy

    Full text link
    Recent astronomical observations suggest that the bulk of energy in the Universe is repulsive and appears like a dark component with negative pressure (Ï‰â‰Ąpx/ρx<0\omega \equiv p_x/\rho_x < 0). In this work we investigate thermodynamic and statistical properties of such a component. It is found that its energy and temperature grow during the evolution of the Universe since work is done on the system. Under the hypothesis of a null chemical potential, the case of phantom energy (ω<−1\omega < -1) seems to be physically meaningless because its entropy is negative. It is also proved that the wavelengths of the ω\omega-quanta decrease in an expanding Universe. This unexpected behavior explains how their energy may be continuously stored in the course of expansion. The spectrum and the associated Wien-type law favors a fermionic nature with ω\omega naturally restricted to the interval −1⩜ω<−1/2-1 \leqslant \omega < -1/2. Our analysis also implies that the ultimate fate of the Universe may be considerably modified. If a dark energy dominated Universe expands forever, it will become increasingly hot.Comment: 5 pages, 2 figures, to appear in Physics Letters

    Critical Exponents for Nuclear Multifragmentation: dynamical lattice model

    Full text link
    We present a dynamical and dissipative lattice model, designed to mimic nuclear multifragmentation. Monte-Carlo simulations with this model show clear signature of critical behaviour and reproduce experimentally observed correlations. In particular, using techniques devised for finite systems, we could obtain two of its critical exponents, whose values are in agreement with those of the universality class to which nuclear multifragmentation is supposed to belong.Comment: 10 pages, 3 figures, to be published in Nuclear Physics
    • 

    corecore