81 research outputs found
L'immunité innée dans le diabète sucré
Le diabète de type 1 (T1D) est une maladie auto-immune caractérisée par la destruction des cellules b du pancréas par les lymphocytes T auto-réactifs. Durant ma thèse, nous nous sommes intéressés au rôle des cellules de l immunité innée dans le T1D à l aide d un modèle murin de la maladie : la souris NOD. Au contraire des cellules du système adaptatif (lymphocytes T et B), les cellules de l immunité innée constituent la première ligne de défense de l organisme lors d une infection. Cette population est constituée entre autre de neutrophiles, cellules dendritiques plasmacytoïdes (pDC), macrophages, mais aussi de lymphocytes T et B non conventionnels tel que les cellules iNKT et B-1a. Précédemment, notre laboratoire a mis en lumière le rôle des lymphocytes iNKT dans le développement du T1D. Durant la première partie de ma thèse, nous avons démontré que les lymphocytes iNKT17, une sous-population des lymphocytes iNKT, ont un rôle délétère dans le T1D chez la souris NOD. Ces cellules infiltrent le pancréas et y produisent de l IL-17, une cytokine pro-inflammatoire. Grâce à des expériences de transferts, nous avons mis en évidence que les lymphocytes iNKT17 exacerbent la maladie via la production d IL-17. Dans la deuxième partie de ma thèse, nous nous sommes intéressés aux mécanismes qui induisent l activation des lymphocytes T auto-réactifs. Nous avons observé chez la souris NOD, que la mort physiologique des cellules b conduit à l activation de cellules de l immunité innée : les neutrophiles, les lymphocytes B-1a et les pDC. La coopération entre ces cellules conduit à l activation des pDC qui produisent de l IFNa. Cette cytokine active les lymphocytes T auto-réactifs qui vont détruire les cellules b du pancréas. Nos résultats montrent que l immunité innée est un acteur important dans la physiopathologie du diabète sucré.The type 1 diabetes ( T1D ) is an autoimmune disease characterized by the destruction of b cells in the pancreas by autoreactive T lymphocytes. During my thesis, we are interested in the role of cells of innate immunity in T1D using a mouse model of the disease: NOD mice. In contrast to cells of the adaptive system (T and B lymphocytes ) cells of innate immunity is the first line of defense of the body during infection . This population consists of neutrophils , among other , plasmacytoid dendritic cells ( pDC ) , macrophages , T lymphocytes but not conventional B as iNKT cells and B -1a.Previously, our laboratory has highlighted the role of iNKT cells in the development of T1D . During the first part of my thesis , we demonstrated that iNKT17 cells, a subpopulation of iNKT cells, have a deleterious role in T1D in NOD mice . These cells infiltrate the pancreas and there produce IL -17 , a proinflammatory cytokine. Through transfer experiments , we demonstrated that lymphocytes iNKT17 exacerbate disease through the production of IL-17 . In the second part of my thesis , we investigated the mechanisms that induce the activation of autoreactive T lymphocytes. We observed in NOD mice , the physiological death of b cells leads to activation of innate immunity cells : neutrophils, lymphocytes B- 1a and pDCs . The cooperation between these cells leads to activation of pDC that produce IFNa . This cytokine activates autoreactive T cells which will destroy the b cells of the pancreas. Our results show that innate immunity is an important player in the pathogenesis of diabetes mellitus.PARIS5-Bibliotheque electronique (751069902) / SudocSudocFranceF
Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes
Unlike conventional major histocompatibility complex–restricted T cells, Vα14-Jα18 NKT cell lineage precursors engage in cognate interactions with CD1d-expressing bone marrow–derived cells that are both necessary and sufficient for their thymic selection and differentiation, but the nature and sequence of these interactions remain partially understood. After positive selection mediated by CD1d-expressing cortical thymocytes, the mature NKT cell lineage undergoes a series of changes suggesting antigen priming by a professional antigen-presenting cell, including extensive cell division, acquisition of a memory phenotype, the ability to produce interleukin-4 and interferon-γ, and the expression of a panoply of NK receptors. By using a combined transgenic and chimeric approach to restrict CD1d expression to cortical thymocytes and to prevent expression on other hematopoietic cell types such as dendritic cells, macrophages, or B cells, we found that, to a large extent, expansion and differentiation events could be imparted by a single-cognate interaction with CD1d-expressing cortical thymocytes. These surprising findings suggest that, unlike thymic epithelial cells, cortical thymocytes can provide unexpected, cell type–specific signals leading to lineage expansion and NKT cell differentiation
Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes
Type 1 diabetes (T1D) is an autoimmune disease that results from the destruction of pancreatic β-cells by the immune system that involves innate and adaptive immune cells. Mucosal-associated invariant T cells (MAIT cells) are innate-like T-cells that recognize derivatives of precursors of bacterial riboflavin presented by the major histocompatibility complex (MHC) class I–related molecule MR1. Since T1D is associated with modification of the gut microbiota, we investigated MAIT cells in this pathology. In patients with T1D and mice of the non-obese diabetic (NOD) strain, we detected alterations in MAIT cells, including increased production of granzyme B, which occurred before the onset of diabetes. Analysis of NOD mice that were deficient in MR1, and therefore lacked MAIT cells, revealed a loss of gut integrity and increased anti-islet responses associated with exacerbated diabetes. Together our data highlight the role of MAIT cells in the maintenance of gut integrity and the control of anti-islet autoimmune responses. Monitoring of MAIT cells might represent a new biomarker of T1D, while manipulation of these cells might open new therapeutic strategies
Viral infection prevents diabetes by inducing regulatory T cells through NKT cell–plasmacytoid dendritic cell interplay
iNKT cell and pDC cross talk prevents type 1 diabetes by inducing T reg cells in the pancreatic lymph node during viral infection
MAIT cells altered phenotype and cytotoxicity in lupus patients are linked to renal disease severity and outcome
IntroductionSystemic lupus erythematosus (SLE) is an autoimmune disease in which circulating immune complexes can cause different types of glomerulonephritis, according to immune deposits and to the type of glomerular cell injury. Proliferative lesions represent the most severe form of lupus nephritis (LN) and often lead to kidney failure and death. Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells that recognize microbial-derived ligands from the riboflavin synthesis pathway. Although abundant in peripheral blood, MAIT cells are enriched in mucosal and inflamed tissues. While previous studies have reported concordant results concerning lower MAIT cell frequencies in the blood of SLE patients, no information is known about MAIT cell function and LN severity and outcome.MethodsIn the current study, we analyzed the baseline phenotype and function of peripheral blood MAIT cells by flow cytometry in 26 patients with LN and in a control group of 16 healthy individuals.ResultsWe observe that MAIT cell frequencies are markedly reduced in blood of LN patients. MAIT cells from patients have an altered phenotype in terms of migration, proliferation and differentiation markers, notably in most severe forms of LN. Frequencies of PMA/ionomycin stimulated MAIT cells secreting effector molecules, such as proinflammatory IL-17 and cytotoxic protein granzyme B, are higher in LN patients. Patients undergoing a complete renal remission after immunosuppressive therapy had higher MAIT cell frequency, lower expression of proliferation marker Ki-67 and granzyme B (GzB) at inclusion. Remarkably, GzB production defines a predictive model for complete remission.DiscussionWe report here that blood MAIT cells display proinflammatory and cytotoxic function in severe lupus nephritis which may play a pathogenesis role, but without association with systemic lupus activity. Finally, low cytotoxic profile of MAIT cells may represent a promising prognostic factor of lupus nephritis remission one year after induction therapy
Acute Response of Peripheral Blood Cell to Autologous Hematopoietic Stem Cell Transplantation in Type 1 Diabetic Patient
Autologous nonmyeloablative hematopoietic stem cell transplantation (AHST) was the first therapeutic approach that can improve β cell function in type 1 diabetic (T1D) patients. This study was designed to investigate the potential mechanisms involved.We applied AHST to nine T1D patients diagnosed within six months and analyzed the acute responses in peripheral blood for lymphocyte subpopulation as well as for genomic expression profiling at the six-month follow-up.We found six patients obtained insulin free (IF group) and three remained insulin dependent (ID group); C-peptide production was significantly higher in IF group compared to ID group. The acute responses in lymphocytes at six-month follow-up include declined CD3(+)CD4(+), CD3(+)CD8(+) T cell population and recovered B cell, NK cell population in both groups but with no significant differences between the two groups; most immune-related genes and pathways were up-regulated in peripheral blood mononuclear cell (PBMC) of both groups while none of transcription factors for immune regulatory component were significantly changed; the IF group demonstrated more AHST-modified genetic events than the ID group and distinct pattern of top pathways, co-expression network as well as 'hub' genes (eg, TCF7 and GZMA) were associated with each group.AHST could improve the islet function in newly diagnosed T1D patients and elimination of the islet specific autoreactive T cells might be one of the mechanisms involved; T1D patients responded differently to AHST possibly due to the distinct transcriptional events occurring in PBMC.ClinicalTrials.gov NCT00807651
- …