2,054 research outputs found

    Geometry meets semantics for semi-supervised monocular depth estimation

    Full text link
    Depth estimation from a single image represents a very exciting challenge in computer vision. While other image-based depth sensing techniques leverage on the geometry between different viewpoints (e.g., stereo or structure from motion), the lack of these cues within a single image renders ill-posed the monocular depth estimation task. For inference, state-of-the-art encoder-decoder architectures for monocular depth estimation rely on effective feature representations learned at training time. For unsupervised training of these models, geometry has been effectively exploited by suitable images warping losses computed from views acquired by a stereo rig or a moving camera. In this paper, we make a further step forward showing that learning semantic information from images enables to improve effectively monocular depth estimation as well. In particular, by leveraging on semantically labeled images together with unsupervised signals gained by geometry through an image warping loss, we propose a deep learning approach aimed at joint semantic segmentation and depth estimation. Our overall learning framework is semi-supervised, as we deploy groundtruth data only in the semantic domain. At training time, our network learns a common feature representation for both tasks and a novel cross-task loss function is proposed. The experimental findings show how, jointly tackling depth prediction and semantic segmentation, allows to improve depth estimation accuracy. In particular, on the KITTI dataset our network outperforms state-of-the-art methods for monocular depth estimation.Comment: 16 pages, Accepted to ACCV 201

    Modes of Random Lasers

    Get PDF
    In conventional lasers, the optical cavity that confines the photons also determines essential characteristics of the lasing modes such as wavelength, emission pattern, ... In random lasers, which do not have mirrors or a well-defined cavity, light is confined within the gain medium by means of multiple scattering. The sharp peaks in the emission spectra of semiconductor powders, first observed in 1999, has therefore lead to an intense debate about the nature of the lasing modes in these so-called lasers with resonant feedback. In this paper, we review numerical and theoretical studies aimed at clarifying the nature of the lasing modes in disordered scattering systems with gain. We will discuss in particular the link between random laser modes near threshold (TLM) and the resonances or quasi-bound (QB) states of the passive system without gain. For random lasers in the localized regime, QB states and threshold lasing modes were found to be nearly identical within the scattering medium. These studies were later extended to the case of more lossy systems such as random systems in the diffusive regime where differences between quasi-bound states and lasing modes were measured. Very recently, a theory able to treat lasers with arbitrarily complex and open cavities such as random lasers established that the TLM are better described in terms of the so-called constant-flux states.Comment: Review paper submitted to Advances in Optics and Photonic

    MnSb2O6: a polar magnet with a chiral crystal structure

    Get PDF
    Structural and magnetic chiralities are found to coexist in a small group of materials in which they produce intriguing phenomenologies such as the recently discovered Skyrmion phases. Here, we describe a previously unknown manifestation of this interplay in MnSb2O6, a trigonal oxide with a chiral crystal structure. Unlike all other known cases, the MnSb2O6 magnetic structure is based on corotating cycloids rather than helices. The coupling to the structural chirality is provided by a magnetic axial vector, related to the so-called vector chirality. We show that this unique arrangement is the magnetic ground state of the symmetric-exchange Hamiltonian, based on ab initio theoretical calculations of the Heisenberg exchange interactions, and is stabilized by out-of-plane anisotropy. MnSb2O6 is predicted to be multiferroic with a unique ferroelectric switching mechanism.open4

    Accessible digital ophthalmoscopy based on liquid-lens technology

    Get PDF
    Ophthalmoscopes have yet to capitalise on novel low-cost miniature optomechatronics, which could disrupt ophthalmic monitoring in rural areas. This paper demonstrates a new design integrating modern components for ophthalmoscopy. Simulations show that the optical elements can be reduced to just two lenses: an aspheric ophthalmoscopic lens and a commodity liquid-lens, leading to a compact prototype. Circularly polarised transpupilary illumination, with limited use so far for ophthalmoscopy, suppresses reflections, while autofocusing preserves image sharpness. Experiments with a human-eye model and cadaver porcine eyes demonstrate our prototype’s clinical value and its potential for accessible imaging when cost is a limiting factor

    Modes of random lasers

    Full text link
    In conventional lasers, the optical cavity that confines the photons also determines essential characteristics of the lasing modes such as wavelength, emission pattern, directivity, and polarization. In random lasers, which do not have mirrors or a well-defined cavity, light is confined within the gain medium by means of multiple scattering. The sharp peaks in the emission spectra of semiconductor powders, first observed in 1999, has therefore lead to an intense debate about the nature of the lasing modes in these so-called lasers with resonant feedback. We review numerical and theoretical studies aimed at clarifying the nature of the lasing modes in disordered scattering systems with gain. The past decade has witnessed the emergence of the idea that even the low-Q resonances of such open systems could play a role similar to the cavity modes of a conventional laser and produce sharp lasing peaks. We focus here on the nearthreshold single-mode lasing regime where nonlinear effects associated with gain saturation and mode competition can be neglected.We discuss in particular the link between random laser modes near threshold and the resonances or quasi-bound (QB) states of the passive system without gain. For random lasers in the localized (strong scattering) regime, QB states and threshold lasing modes were found to be nearly identical within the scattering medium. These studies were later extended to the case of more lossy systems such as random systems in the diffusive regime, where it was observed that increasing the openness of such systems eventually resulted in measurable and increasing differences between quasi-bound states and lasing modes. Very recently, a theory able to treat lasers with arbitrarily complex and open cavities such as random lasers established that the threshold lasing modes are in fact distinct from QB states of the passive system and are better described in terms of a new class of states, the so-called constant-flux states. The correspondence between QB states and lasing modes is found to improve in the strong scattering limit, confirming the validity of initial work in the strong scattering limit. © 2010 Optical Society of America

    Land expropriation compensation among multiple stakeholders in a mining area: explaining “skeleton house” compensation

    Get PDF
    House demolition compensation in mining areas in China is determined by house size. This has led farmers to engage in “skeleton house” construction, namely, building simple structures that can increase the compensation obtained following land expropriation. While compensation standards and social security for land-expropriated farmers has received some research attention, investigations are yet to consider this challenge from different stakeholder perspectives. Clearly identifying the interests and interactive relationships of each group offers potential to deliver positive outcomes for all stakeholders and for the environment. This paper targets this gap using document analysis alongside semi-structured interviews with the Pingshou China Coal Corporation (PCCC), Pinglu District Government (PDG) and land-expropriated farmers in Shanxi Province in Northwest China, identifying reasons for and potential solutions to, the phenomenon of skeleton house construction. Novel application of the DPSIR (driving forces-pressures-statuses-impacts-responses) framework as a structuring tool for our analysis provides important insight into how the emerging situation has arisen and helps to identify potential countermeasures. There are many differences among the perspectives of the three stakeholder groups, and all are responsible for the phenomenon of skeleton houses. PCCC should follow different production routes to reduce their costs and the impacts on farmers. District Government should shift from a coping position (dealing with negative impacts from the coal industry) towards actively shaping coal industry development, thus reducing its negative impacts on wider society. Land-expropriated farmers should actively participate in meaningful discussions to assist PCCC and PDG to make reasonable and considerate compensation standards and social security policies

    Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions

    Get PDF
    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error

    Configuration interaction in valence bond theory

    Get PDF
    Configuration interaction tenichque is applied to the valence bond theory. Virtual VB orbitals are built, which are localized and orthogonal to their corresponding occupied orbitals and the excited VB structures are defined, which come from their corresponding fundamental VB structures. The testing calculations of H-2, LiH, HF show that the VB results using CI method match those of the molecular orbital based on the coupled cluster CCSD method, and the Cl technique may become a useful tool in VB method
    corecore