205 research outputs found

    Stable Isotope Metabolic Labeling with a Novel 15N-Enriched Bacteria Diet for Improved Proteomic Analyses of Mouse Models for Psychopathologies

    Get PDF
    The identification of differentially regulated proteins in animal models of psychiatric diseases is essential for a comprehensive analysis of associated psychopathological processes. Mass spectrometry is the most relevant method for analyzing differences in protein expression of tissue and body fluid proteomes. However, standardization of sample handling and sample-to-sample variability are problematic. Stable isotope metabolic labeling of a proteome represents the gold standard for quantitative mass spectrometry analysis. The simultaneous processing of a mixture of labeled and unlabeled samples allows a sensitive and accurate comparative analysis between the respective proteomes. Here, we describe a cost-effective feeding protocol based on a newly developed 15N bacteria diet based on Ralstonia eutropha protein, which was applied to a mouse model for trait anxiety. Tissue from 15N-labeled vs. 14N-unlabeled mice was examined by mass spectrometry and differences in the expression of glyoxalase-1 (GLO1) and histidine triad nucleotide binding protein 2 (Hint2) proteins were correlated with the animals' psychopathological behaviors for methodological validation and proof of concept, respectively. Additionally, phenotyping unraveled an antidepressant-like effect of the incorporation of the stable isotope 15N into the proteome of highly anxious mice. This novel phenomenon is of considerable relevance to the metabolic labeling method and could provide an opportunity for the discovery of candidate proteins involved in depression-like behavior. The newly developed 15N bacteria diet provides researchers a novel tool to discover disease-relevant protein expression differences in mouse models using quantitative mass spectrometry

    Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein kinase C interacting protein (PKCI/HINT1) is a small protein belonging to the histidine triad (HIT) family proteins. Its brain immunoreactivity is located in neurons and neuronal processes. PKCI/HINT1 gene knockout (KO) mice display hyper-locomotion in response to D-amphetamine which is considered a positive symptom of schizophrenia in animal models. <it>Postmortem </it>studies identified PKCI/HINT1 as a candidate molecule for schizophrenia and bipolar disorder. We investigated the hypothesis that the PKCI/HINT1 gene may play an important role in regulating mood function in the CNS. We submitted PKCI/HINT1 KO mice and their wild type (WT) littermates to behavioral tests used to study anti-depressant, anxiety like behaviors, and goal-oriented behavior. Additionally, as many mood disorders coincide with modifications of hypothalamic-pituitary-adrenal (HPA) axis function, we assessed the HPA activity through measurement of plasma corticosterone levels.</p> <p>Results</p> <p>Compared to the WT controls, KO mice exhibited less immobility in the forced swim (FST) and the tail suspension (TST) tests. Activity in the TST tended to be attenuated by acute treatment with valproate at 300 mg/kg in KO mice. The PKCI/HINT1 KO mice presented less thigmotaxis in the Morris water maze and spent progressively more time in the lit compartment in the light/dark test. In a place navigation task, KO mice exhibited enhanced acquisition and retention. Furthermore, the afternoon basal plasma corticosterone level in PKCI/HINT1 KO mice was significantly higher than in the WT.</p> <p>Conclusion</p> <p>PKCI/HINT1 KO mice displayed a phenotype of behavioral and endocrine features which indicate changes of mood function, including anxiolytic-like and anti-depressant like behaviors, in conjunction with an elevated corticosterone level in plasma. These results suggest that the PKCI/HINT 1 gene could be important for the mood regulation function in the CNS.</p

    A New Anti-Depressive Strategy for the Elderly: Ablation of FKBP5/FKBP51

    Get PDF
    The gene FKBP5 codes for FKBP51, a co-chaperone protein of the Hsp90 complex that increases with age. Through its association with Hsp90, FKBP51 regulates the glucocorticoid receptor (GR). Single nucleotide polymorphisms (SNPs) in the FKBP5 gene associate with increased recurrence of depressive episodes, increased susceptibility to post-traumatic stress disorder, bipolar disorder, attempt of suicide, and major depressive disorder in HIV patients. Variation in one of these SNPs correlates with increased levels of FKBP51. FKBP51 is also increased in HIV patients. Moreover, increases in FKBP51 in the amygdala produce an anxiety phenotype in mice. Therefore, we tested the behavioral consequences of FKBP5 deletion in aged mice. Similar to that of naΓ―ve animals treated with classical antidepressants FKBP5βˆ’/βˆ’ mice showed antidepressant behavior without affecting cognition and other basic motor functions. Reduced corticosterone levels following stress accompanied these observed effects on depression. Age-dependent anxiety was also modulated by FKBP5 deletion. Therefore, drug discovery efforts focused on depleting FKBP51 levels may yield novel antidepressant therapies

    Cerebral Accumulation of Dietary Derivable Plant Sterols does not Interfere with Memory and Anxiety Related Behavior in Abcg5βˆ’/βˆ’ Mice

    Get PDF
    Plant sterols such as sitosterol and campesterol are frequently applied as functional food in the prevention of atherosclerosis. Recently, it became clear that plasma derived plant sterols accumulate in murine brains. We questioned whether plant sterols in the brain are associated with alterations in brain cholesterol homeostasis and subsequently with brain functions. ATP binding cassette (Abc)g5βˆ’/βˆ’ mice, a phytosterolemia model, were compared to Abcg5+/+ mice for serum and brain plant sterol accumulation and behavioral and cognitive performance. Serum and brain plant sterol concentrations were respectively 35–70-fold and 5–12-fold increased in Abcg5βˆ’/βˆ’ mice (P < 0.001). Plant sterol accumulation resulted in decreased levels of desmosterol (P < 0.01) and 24(S)-hydroxycholesterol (P < 0.01) in the hippocampus, the brain region important for learning and memory functions, and increased lanosterol levels (P < 0.01) in the cortex. However, Abcg5βˆ’/βˆ’ and Abcg5+/+ displayed no differences in memory functions or in anxiety and mood related behavior. The swimming speed of the Abcg5βˆ’/βˆ’ mice was slightly higher compared to Abcg5+/+ mice (P < 0.001). In conclusion, plant sterols in the brains of Abcg5βˆ’/βˆ’ mice did have consequences for brain cholesterol metabolism, but did not lead to an overt phenotype of memory or anxiety related behavior. Thus, our data provide no contra-indication for nutritional intake of plant sterol enriched nutrition

    Comparison of Therapeutic Effects between Pulsed and Continuous Wave 810-nm Wavelength Laser Irradiation for Traumatic Brain Injury in Mice

    Get PDF
    Background and Objective Transcranial low-level laser therapy (LLLT) using near-infrared light can efficiently penetrate through the scalp and skull and could allow non-invasive treatment for traumatic brain injury (TBI). In the present study, we compared the therapeutic effect using 810-nm wavelength laser light in continuous and pulsed wave modes in a mouse model of TBI. Study Design/Materials and Methods TBI was induced by a controlled cortical-impact device and 4-hours post-TBI 1-group received a sham treatment and 3-groups received a single exposure to transcranial LLLT, either continuous wave or pulsed at 10-Hz or 100-Hz with a 50% duty cycle. An 810-nm Ga-Al-As diode laser delivered a spot with diameter of 1-cm onto the injured head with a power density of 50-mW/cm2 for 12-minutes giving a fluence of 36-J/cm2. Neurological severity score (NSS) and body weight were measured up to 4 weeks. Mice were sacrificed at 2, 15 and 28 days post-TBI and the lesion size was histologically analyzed. The quantity of ATP production in the brain tissue was determined immediately after laser irradiation. We examined the role of LLLT on the psychological state of the mice at 1 day and 4 weeks after TBI using tail suspension test and forced swim test. Results The 810-nm laser pulsed at 10-Hz was the most effective judged by improvement in NSS and body weight although the other laser regimens were also effective. The brain lesion volume of mice treated with 10-Hz pulsed-laser irradiation was significantly lower than control group at 15-days and 4-weeks post-TBI. Moreover, we found an antidepressant effect of LLLT at 4-weeks as shown by forced swim and tail suspension tests. Conclusion The therapeutic effect of LLLT for TBI with an 810-nm laser was more effective at 10-Hz pulse frequency than at CW and 100-Hz. This finding may provide a new insight into biological mechanisms of LLLT.National Institutes of Health (U.S.) (NIH grant R01AI050875)Center for Integration of Medicine and Innovative Technology (DAMD17-02-2-0006)United States. Dept. of Defense. Congressionally Directed Medical Research Programs (W81XWH-09-1-0514)United States. Air Force Office of Scientific Research (Military Photomedicine Program (FA9950-04-1-0079))Japan. Ministry of Education, Culture, Sports, Science and TechnologyJapan Society for the Promotion of Scienc

    Phenotypic Characterization of a Genetically Diverse Panel of Mice for Behavioral Despair and Anxiety

    Get PDF
    Animal models of human behavioral endophenotypes, such as the Tail Suspension Test (TST) and the Open Field assay (OF), have proven to be essential tools in revealing the genetics and mechanisms of psychiatric diseases. As in the human disorders they model, the measurements generated in these behavioral assays are significantly impacted by the genetic background of the animals tested. In order to better understand the strain-dependent phenotypic variability endemic to this type of work, and better inform future studies that rely on the data generated by these models, we phenotyped 33 inbred mouse strains for immobility in the TST, a mouse model of behavioral despair, and for activity in the OF, a model of general anxiety and locomotor activity.We identified significant strain-dependent differences in TST immobility, and in thigmotaxis and distance traveled in the OF. These results were replicable over multiple testing sessions and exhibited high heritability. We exploited the heritability of these behavioral traits by using in silico haplotype-based association mapping to identify candidate genes for regulating TST behavior. Two significant loci (-logp >7.0, gFWER adjusted p value <0.05) of approximately 300 kb each on MMU9 and MMU10 were identified. The MMU10 locus is syntenic to a major human depressive disorder QTL on human chromosome 12 and contains several genes that are expressed in brain regions associated with behavioral despair.We report the results of phenotyping a large panel of inbred mouse strains for depression and anxiety-associated behaviors. These results show significant, heritable strain-specific differences in behavior, and should prove to be a valuable resource for the behavioral and genetics communities. Additionally, we used haplotype mapping to identify several loci that may contain genes that regulate behavioral despair
    • …
    corecore