287 research outputs found

    Verticalization of bacterial biofilms

    Full text link
    Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically-aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modeling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an "inverse domino effect". The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length.Comment: Main text 10 pages, 4 figures; Supplementary Information 35 pages, 15 figure

    Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells

    Get PDF
    Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer

    PANIC-ATTAC: A Mouse Model for Inducible and Reversible β-Cell Ablation

    Get PDF
    OBJECTIVE—Islet transplantations have been performed clinically, but their practical applications are limited. An extensive effort has been made toward the identification of pancreatic β-cell stem cells that has yielded many insights to date, yet targeted reconstitution of β-cell mass remains elusive. Here, we present a mouse model for inducible and reversible ablation of pancreatic β-cells named the PANIC-ATTAC (pancreatic islet β-cell apoptosis through targeted activation of caspase 8) mouse

    Pediatric brain tumor cancer stem cells: cell cycle dynamics, DNA repair, and etoposide extrusion

    Get PDF
    Reliable model systems are needed to elucidate the role cancer stem cells (CSCs) play in pediatric brain tumor drug resistance. The majority of studies to date have focused on clinically distinct adult tumors and restricted tumor types. Here, the CSC component of 7 newly established primary pediatric cell lines (2 ependymomas, 2 medulloblastomas, 2 gliomas, and a CNS primitive neuroectodermal tumor) was thoroughly characterized. Comparison of DNA copy number with the original corresponding tumor demonstrated that genomic changes present in the original tumor, typical of that particular tumor type, were retained in culture. In each case, the CSC component was approximately 3–4-fold enriched in neurosphere culture compared with monolayer culture, and a higher capacity for multilineage differentiation was observed for neurosphere-derived cells. DNA content profiles of neurosphere-derived cells expressing the CSC marker nestin demonstrated the presence of cells in all phases of the cell cycle, indicating that not all CSCs are quiescent. Furthermore, neurosphere-derived cells demonstrated an increased resistance to etoposide compared with monolayer-derived cells, having lower initial DNA damage, potentially due to a combination of increased drug extrusion by ATP-binding cassette multidrug transporters and enhanced rates of DNA repair. Finally, orthotopic xenograft models reflecting the tumor of origin were established from these cell lines. In summary, these cell lines and the approach taken provide a robust model system that can be used to develop our understanding of the biology of CSCs in pediatric brain tumors and other cancer types and to preclinically test therapeutic agents

    Decreased expression of ABAT and STC2 hallmarks ER-positive inflammatory breast cancer and endocrine therapy resistance in advanced disease

    Get PDF
    Background: Patients with Estrogen Receptor α-positive (ER+) Inflammatory Breast Cancer (IBC) are less responsive to endocrine therapy compared with ER+ non-IBC (nIBC) patients. The study of ER+ IBC samples might reveal biomarkers for endocrine resistant breast cancer. Materials & methods: Gene expression profiles of ER+ samples from 201 patients were explored for genes that discriminated between IBC and nIBC. Classifier genes were applied onto clinically annotated expression data from 947 patients with ER+ breast cancer and validated with RT-qPCR for 231 patients treated with first-line tamoxifen. Relationships with metastasis-free survival (MFS) and progression-free survival (PFS) following adjuvant and first-line endocrine treatment, respectively, were investigated using Cox regression analysis. Results: A metagene of six genes including the genes encoding for 4-aminobutyrate aminotransferase (ABAT) and Stanniocalcin-2 (STC2) were identified to distinguish 22 ER+ IBC from 43 ER+ nIBC patients and remained discriminatory in an independent series of 136 patients. The metagene and two genes were not prognostic in 517 (neo)adjuvant untreated lymph node-negative ER+ nIBC breast cancer patients. Only ABAT was related to outcome in 250 patients treated with adjuvant tamoxifen. Three independent series of in total 411 patients with advanced disease showed increased metagene scores and decreased expression of ABAT and STC2 to be correlated with poor first-line endocrine therapy outcome. The biomarkers remained predictive for first-line tamoxifen treatment outcome in multivariate analysis including traditional factors or published signatures. In an exploratory analysis, ABAT and STC2 protein expression levels had no relation with PFS after first-line tamoxifen. Conclusions: This study utilized ER+ IBC to identify a metagene including ABAT and STC2 as predictive biomarkers for endocrine therapy resistance

    The status of supergenes in the 21st century: Recombination suppression in Batesian 1 mimicry and sex chromosomes and other complex adaptations

    Get PDF
    I review theoretical models for the evolution of supergenes in the cases of Batesian mimicry in butterflies, distylous plants and sex chromosomes. For each of these systems, I outline the genetic evidence that led to the proposal that they involve multiple genes that interact during ‘complex adaptations’, and at which the mutations involved are not unconditionally advantageous, but show advantages that trade‐off against some disadvantages. I describe recent molecular genetic studies of these systems and questions they raise about the evolution of suppressed recombination. Nonrecombining regions of sex chromosomes have long been known, but it is not yet fully understood why recombination suppression repeatedly evolved in systems in distantly related taxa, but does not always evolve. Recent studies of distylous plants are tending to support the existence of recombination‐suppressed genome regions, which may include modest numbers of genes and resemble recently evolved sex‐linked regions. For Batesian mimicry, however, molecular genetic work in two butterfly species suggests a new supergene scenario, with a single gene mutating to produce initial adaptive phenotypes, perhaps followed by modifiers specifically refining and perfecting the new phenotype

    Immunogenicity and safety of a quadrivalent high-dose inactivated influenza vaccine compared with a standard-dose quadrivalent influenza vaccine in healthy people aged 60 years or older: a randomized Phase III trial

    Get PDF
    A quadrivalent high-dose inactivated influenza vaccine (IIV4-HD) is licensed for adults 6565 y of age based on immunogenicity and efficacy studies. However, IIV4-HD has not been evaluated in adults aged 60\u201364 y. This study compared immunogenicity and safety of IIV4-HD with a standard-dose quadrivalent influenza vaccine (IIV4-SD) in adults aged 6560 y. This Phase III, randomized, modified double-blind, active-controlled study enrolled 1,528 participants aged 6560 y, randomized 1:1 to a single injection of IIV4-HD or IIV4-SD. Hemagglutination inhibition (HAI) geometric mean titers (GMTs) were measured at baseline and D 28 and seroconversion assessed. Safety was described for 180 d after vaccination. The primary immunogenicity objective was superiority of IIV4-HD versus IIV4-SD, for all four influenza strains 28 d post vaccination in participants aged 60\u201364 and 6565 y. IIV4-HD induced a superior immune response versus IIV4-SD in terms of GMTs in participants aged 60\u201364 y and those aged 6565 y for all four influenza strains. IIV4-HD induced higher GMTs in those aged 60\u201364 y than those aged 6565 y. Seroconversion rates were higher for IIV4-HD versus IIV4-SD in each age-group for all influenza strains. Both vaccines were well tolerated in participants 6560 y of age, with no safety concerns identified. More solicited reactions were reported with IIV4-HD than with IIV4-SD. IIV4-HD provided superior immunogenicity versus IIV4-SD and was well tolerated in adults aged 6560 y. IIV4-HD is assumed to offer improved protection against influenza compared with IIV4-SD in adults aged 6560 y, as was previously assessed for adults aged 6565 y

    Precursor lesions of early onset pancreatic cancer

    Get PDF
    Early onset pancreatic cancer (EOPC) constitutes less than 5% of all newly diagnosed cases of pancreatic cancer (PC). Although histopathological characteristics of EOPC have been described, no detailed reports on precursor lesions of EOPC are available. In the present study, we aimed to describe histopathological picture of extratumoral parenchyma in 23 cases of EOPCs (definition based on the threshold value of 45 years of age) with particular emphasis on two types of precursor lesions of PC: pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasms (IPMNs). The types, grades, and densities of precursor lesions of PC were compared in patients with EOPCs, in young patients with neuroendocrine neoplasms (NENs), and in older (at the age of 46 or more) patients with PC. PanINs were found in 95.6% of cases of EOPCs. PanINs-3 were found in 39.1% of EOPC cases. Densities of all PanIN grades in EOPC cases were larger than in young patients with NENs. Density of PanINs-1A in EOPC cases was larger than in older patients with PC, but densities of PanINs of other grades were comparable. IPMN was found only in a single patient with EOPC but in 20% of older patients with PC. PanINs are the most prevalent precursor lesions of EOPC. IPMNs are rarely precursor lesions of EOPC. Relatively high density of low-grade PanINs-1 in extratumoral parenchyma of patients with EOPC may result from unknown multifocal genetic alterations in pancreatic tissue in patients with EOPCs

    Prospective study of intratumoral microvessel density, p53 expression and survival in colorectal cancer

    Get PDF
    Adjuvant treatment of patients with colorectal cancer is hampered by a lack of reliable prognostic factors in addition to the clinicopathological staging system. A poorly defined but considerable fraction of Astler–Coller stage B patients will experience tumour recurrence, and some of the stage C patients will probably survive for a prolonged time after surgery without adjuvant treatment. Assessing parameters related to tumour angiogenesis has provided valuable prognostic information in different tumour types. The formation of new microvessels is part of the malignant phenotype in the majority of tumours. Alterations in tumour-suppressor genes, such as the p53 gene, or oncogenes, such as the ras gene, have been found to be responsible for changing the local balance of pro- and antiangiogenic factors in favour of the former. In this prospective study, intratumoral microvessel density (IMD) was assessed by immunostaining tissue sections for CD31 and counting individual microvessels in selected and highly vascular regions in specimens of 145 colorectal cancer patients. p53 protein overexpression was semiquantitatively determined after immunohistochemistry. In both uni- and multivariate analysis, high IMD was significantly associated with shorter survival in the patients undergoing surgery with curative intent (Astler–Coller stages A–C). p53 added prognostic power to IMD, both in Astler–Coller stage B and stage C patients. An association between IMD and mode of metastasis was also noted. High IMD was strongly associated with the incidence of haematogenous metastasis during follow-up, but not with the presence of lymphogenic metastasis observed at surgery. This study confirms the results of previous retrospective analyses of IMD and survival in colorectal cancer and warrants a clinical validation by randomizing stage B tumour patients with high IMD and p53 overexpression between adjuvant treatment or not. © 1999 Cancer Research Campaig
    corecore