757 research outputs found

    β-Lapachone induces heart morphogenetic and functional defects by promoting the death of erythrocytes and the endocardium in zebrafish embryos

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-Lapachone has antitumor and wound healing-promoting activities. To address the potential influences of various chemicals on heart development of zebrafish embryos, we previously treated zebrafish embryos with chemicals from a Sigma LOPAC1280™ library and found several chemicals including β-lapachone that affected heart morphogenesis. In this study, we further evaluated the effects of β-lapachone on zebrafish embryonic heart development.</p> <p>Methods</p> <p>Embryos were treated with β-lapachone or dimethyl sulfoxide (DMSO) at 24 or 48 hours post fertilization (hpf) for 4 h at 28°C. Heart looping and valve development was analyzed by whole-mount <it>in situ </it>hybridization and histological analysis. For fractional shortening and wall shear stress analyses, AB and Tg (<it>gata1</it>:<it>DsRed</it>) embryos were recorded for their heart pumping and blood cell circulations via time-lapse fluorescence microscopy. Dextran rhodamine dye injection into the tail reticular cells was used to analyze circulation. Reactive oxygen species (ROS) was analyzed by incubating embryos in 5-(and 6-)-chloromethyl-2',7'-dichloro-dihydrofluorescein diacetate (CM-H<sub>2</sub>DCFDA) and recorded using fluorescence microscopy. <it>o</it>-Dianisidine (ODA) staining and whole mount <it>in situ </it>hybridization were used to analyze erythrocytes. TUNEL assay was used to examine DNA fragmentation.</p> <p>Results</p> <p>We observed a linear arrangement of the ventricle and atrium, bradycardia arrhythmia, reduced fractional shortening, circulation with a few or no erythrocytes, and pericardial edema in β-lapachone-treated 52-hpf embryos. Abnormal expression patterns of <it>cmlc2</it>, <it>nppa</it>, <it>BMP4</it>, <it>versican</it>, and <it>nfatc1</it>, and histological analyses showed defects in heart-looping and valve development of β-lapachone-treated embryos. ROS production was observed in erythrocytes and DNA fragmentation was detected in both erythrocytes and endocardium of β-lapachone-treated embryos. Reduction in wall shear stress was uncovered in β-lapachone-treated embryos. Co-treatment with the NQO1 inhibitor, dicoumarol, or the calcium chelator, BAPTA-AM, rescued the erythrocyte-deficiency in circulation and heart-looping defect phenotypes in β-lapachone-treated embryos. These results suggest that the induction of apoptosis of endocardium and erythrocytes by β-lapachone is mediated through an NQO1- and calcium-dependent pathway.</p> <p>Conclusions</p> <p>The novel finding of this study is that β-lapachone affects heart morphogenesis and function through the induction of apoptosis of endocardium and erythrocytes. In addition, this study further demonstrates the importance of endocardium and hemodynamic forces on heart morphogenesis and contractile performance.</p

    Regulation of shear-induced nuclear translocation of the Nrf2 transcription factor in endothelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular endothelial cells (ECs) constantly experience fluid shear stresses generated by blood flow. Laminar flow is known to produce atheroprotective effects on ECs. Nrf2 is a transcription factor that is essential for the antioxidant response element (ARE)-mediated induction of genes such as heme-oxygenase 1 (HO-1). We previously showed that fluid shear stress increases intracellular reactive oxygen species (ROS) in ECs. Moreover, oxidants are known to stimulate Nrf2. We thus examined the regulation of Nrf2 in cultured human ECs by shear stress.</p> <p>Results</p> <p>Exposure of human umbilical vein endothelial cells (HUVECs) to laminar shear stress (12 dyne/cm<sup>2</sup>) induced Nrf2 nuclear translocation, which was inhibited by a phosphatidylinositol 3-kinase (PI3K) inhibitor, a protein kinase C (PKC) inhibitor, and an antioxidant agent N-acetyl cysteine (NAC), but not by other protein kinase inhibitors. Therefore, PI3K, PKC, and ROS are involved in the signaling pathway that leads to the shear-induced nuclear translocation of Nrf2. We also found that shear stress increased the ARE-binding activity of Nrf2 and the downstream expression of HO-1.</p> <p>Conclusion</p> <p>Our data suggest that the atheroprotective effect of laminar flow is partially attributed to Nrf2 activation which results in ARE-mediated gene transcriptions, such as HO-1 expression, that are beneficial to the cardiovascular system.</p

    High expression FUT1 and B3GALT5 is an independent predictor of postoperative recurrence and survival in hepatocellular carcinoma.

    Get PDF
    Cancer may arise from dedifferentiation of mature cells or maturation-arrested stem cells. Previously we reported that definitive endoderm from which liver was derived, expressed Globo H, SSEA-3 and SSEA-4. In this study, we examined the expression of their biosynthetic enzymes, FUT1, FUT2, B3GALT5 and ST3GAL2, in 135 hepatocellular carcinoma (HCC) tissues by qRT-PCR. High expression of either FUT1 or B3GALT5 was significantly associated with advanced stages and poor outcome. Kaplan Meier survival analysis showed significantly shorter relapse-free survival (RFS) for those with high expression of either FUT1 or B3GALT5 (P = 0.024 and 0.001, respectively) and shorter overall survival (OS) for those with high expression of B3GALT5 (P = 0.017). Combination of FUT1 and B3GALT5 revealed that high expression of both genes had poorer RFS and OS than the others (P &lt; 0.001). Moreover, multivariable Cox regression analysis identified the combination of B3GALT5 and FUT1 as an independent predictor for RFS (HR: 2.370, 95% CI: 1.505-3.731, P &lt; 0.001) and OS (HR: 2.153, 95% CI: 1.188-3.902, P = 0.012) in HCC. In addition, the presence of Globo H, SSEA-3 and SSEA-4 in some HCC tissues and their absence in normal liver was established by immunohistochemistry staining and mass spectrometric analysis

    Strong and broadly tunable plasmon resonances in thick films of aligned carbon nanotubes

    Full text link
    Low-dimensional plasmonic materials can function as high quality terahertz and infrared antennas at deep subwavelength scales. Despite these antennas' strong coupling to electromagnetic fields, there is a pressing need to further strengthen their absorption. We address this problem by fabricating thick films of aligned, uniformly sized carbon nanotubes and showing that their plasmon resonances are strong, narrow, and broadly tunable. With thicknesses ranging from 25 to 250 nm, our films exhibit peak attenuation reaching 70%, quality factors reaching 9, and electrostatically tunable peak frequencies by a factor of 2.3x. Excellent nanotube alignment leads to the attenuation being 99% linearly polarized along the nanotube axis. Increasing the film thickness blueshifts the plasmon resonators down to peak wavelengths as low as 1.4 micrometers, promoting them to a new near-infrared regime in which they can both overlap the S11 nanotube exciton energy and access the technologically important infrared telecom band.Comment: 19 pages, 5 figures, main text followed by supporting informatio

    Functional interaction between Env oncogene from Jaagsiekte sheep retrovirus and tumor suppressor Sprouty2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Jaagsiekte sheep retrovirus (JSRV) is a type D retrovirus capable of transforming target cells <it>in vitro </it>and <it>in vivo</it>. The Envelope <it>(Env) </it>gene from JSRV and from related retroviruses can induce oncogenic transformation, although the detailed mechanism is yet to be clearly understood. Host cell factors are envisaged to play a critical determining role in the regulation of <it>Env</it>-mediated cell transformation.</p> <p>Results</p> <p>JSRV <it>Env</it>-mediated transformation of a lung adenocarcinoma cell line induced rapid proliferation, anchorage-independent growth and tumor formation, but completely abrogated the migration ability. An analysis of the signaling scenario in the transformed cells suggested the involvement of the ERK pathway regulated by Sprouty2 in cell migration, and the PI3K-Akt and STAT3 pathways in proliferation and anchorage-independence. On the other hand, in a normal lung epithelial cell line, <it>Env</it>-mediated transformation only decreased the migration potential while the other functions remained unaltered. We observed that <it>Env </it>induced the expression of a tumor suppressor, Sprouty2, suggesting a correlation between <it>Env</it>-effect and Sprouty2 expression. Overexpression of Sprouty2 <it>per se </it>not only decreased the migratory potential and tumor formation potential of the target cells but also made them resistant to subsequent <it>Env</it>-mediated transformation. On the other hand, over expression of the functional mutants of Sprouty2 had no inhibitory effect, confirming the role of Sprouty2 as a tumor suppressor.</p> <p>Conclusions</p> <p>Our studies demonstrate that <it>Env </it>and Sprouty2 have a functional relationship, probably through shared signaling network. Sprouty2 functions as a tumor suppressor regulating oncogenic transformation of cells, and it therefore has the potential to be exploited as a therapeutic anti-cancer agent.</p

    Development of a Game-Based e-Learning System with Augmented Reality for Improving Students’ Learning Performance

    Get PDF
    Currently, the school children usually spend a lot of time on the games in their recreational activities and some of them are even addicted to the games. Compared with other extracurricular activities, the e-Learning system reflects the fact that school children are very interested in the games. As a result, educators have lately craved to develop effective teaching activities that allow the school children to learn some subjects and to play the games simultaneously.  Therefore, this study is based on an e-Learning system which combines the serious game by Unity3D Game Engine with augmented reality (AR). Students are able to acquire their knowledge and to foster logical skills via this game-based e-Learning system.  According to its efficacy and utilities, this study has assessed and compared the game-based e-Learning system with the traditional learning and other e-Learning systems. The experimental results have indicated that the proposed game-based e-Learning system can outperform other existing systems

    Energy Conversion and Partition in the Asymmetric Reconnection Diffusion Region

    Get PDF
    We investigate the energy conversion and partition in the asymmetric reconnection diffusion region using two-dimensional particle-in-cell simulations and Magnetosphere Multiscale (MMS) mission observations. Under an upstream condition with equal temperatures in the two inflow regions, the simulation analysis indicates that the energy partition between ions and electrons depends on the distance from the X-line. Within the central electron diffusion region (EDR), nearly all dissipated electromagnetic field energies are converted to electrons. From the EDR to the ion diffusion region (IDR) scales, the rate of the electron energy gain decreases to be lower than that of ions. A magnetopause reconnection event inside the IDR observed by MMS shows comparable ion and electron energy gains, consistent with the simulation result in the transition region from EDR to IDR. At the EDR scale, the electron energization is mainly by the reconnection electric field (E(sub r)); in-plane electric fields (E(sub xz)) provide additional positive contributions near the X-line and do negative work on electrons beyond the EDR. The guide field reduces the electron energization by both E(sub r) and E(sub xz) in the EDR. For ion energization, E(sub r) and E(sub xz) have comparable contributions near the time of the peak reconnection rate, while E(sub xz) dominants at later time. At the IDR scale, the guide field causes asymmetry in the amount of the energy gain and energization mechanisms between two exhausts but does not have significant effects on energy partition. Our study advances understanding of ion and electron energization in asymmetric reconnect IDRs
    corecore