191 research outputs found

    OMP-type Algorithm with Structured Sparsity Patterns for Multipath Radar Signals

    Get PDF
    A transmitted, unknown radar signal is observed at the receiver through more than one path in additive noise. The aim is to recover the waveform of the intercepted signal and to simultaneously estimate the direction of arrival (DOA). We propose an approach exploiting the parsimonious time-frequency representation of the signal by applying a new OMP-type algorithm for structured sparsity patterns. An important issue is the scalability of the proposed algorithm since high-dimensional models shall be used for radar signals. Monte-Carlo simulations for modulated signals illustrate the good performance of the method even for low signal-to-noise ratios and a gain of 20 dB for the DOA estimation compared to some elementary method

    New Renaissance (The)

    Get PDF
    Les sages de ce comitĂ© ont procĂ©dĂ© Ă  l\u27Ă©tude du projet de numĂ©risation de l\u27ensemble du patrimoine culturel europĂ©en et proposent dans ce rapport une sĂ©rie de recommandations visant Ă  encadrer cet ambitieux programme afin de : -partager notre patrimoine commun, dans toute sa richesse et sa diversitĂ© ; - relier notre passĂ© Ă  notre prĂ©sent ; - prĂ©server cet hĂ©ritage pour les gĂ©nĂ©rations futures ; - protĂ©ger les intĂ©rĂȘts des crĂ©ateurs europĂ©ens ; - favoriser la crĂ©ativitĂ©, celles des professionnels comme celles des amateur

    Variations on a theme of Heisenberg, Pauli and Weyl

    Full text link
    The parentage between Weyl pairs, generalized Pauli group and unitary group is investigated in detail. We start from an abstract definition of the Heisenberg-Weyl group on the field R and then switch to the discrete Heisenberg-Weyl group or generalized Pauli group on a finite ring Z_d. The main characteristics of the latter group, an abstract group of order d**3 noted P_d, are given (conjugacy classes and irreducible representation classes or equivalently Lie algebra of dimension d**3 associated with P_d). Leaving the abstract sector, a set of Weyl pairs in dimension d is derived from a polar decomposition of SU(2) closely connected to angular momentum theory. Then, a realization of the generalized Pauli group P_d and the construction of generalized Pauli matrices in dimension d are revisited in terms of Weyl pairs. Finally, the Lie algebra of the unitary group U(d) is obtained as a subalgebra of the Lie algebra associated with P_d. This leads to a development of the Lie algebra of U(d) in a basis consisting of d**2 generalized Pauli matrices. In the case where d is a power of a prime integer, the Lie algebra of SU(d) can be decomposed into d-1 Cartan subalgebras.Comment: Dedicated to the memory of Mosh\'e Flato on the occasion of the tenth anniversary of his deat

    Open Data for Global Science

    Get PDF
    The global science system stands at a critical juncture. On the one hand, it is overwhelmed by a hidden avalanche of ephemeral bits that are central components of modern research and of the emerging ‘cyberinfrastructure’4 for e-Science.5 The rational management and exploitation of this cascade of digital assets offers boundless opportunities for research and applications. On the other hand, the ability to access and use this rising flood of data seems to lag behind, despite the rapidly growing capabilities of information and communication technologies (ICTs) to make much more effective use of those data. As long as the attention for data policies and data management by researchers, their organisations and their funders does not catch up with the rapidly changing research environment, the research policy and funding entities in many cases will perpetuate the systemic inefficiencies, and the resulting loss or underutilisation of valuable data resources derived from public investments. There is thus an urgent need for rationalised national strategies and more coherent international arrangements for sustainable access to public research data, both to data produced directly by government entities and to data generated in academic and not-for-profit institutions with public funding. In this chapter, we examine some of the implications of the ‘data driven’ research and possible ways to overcome existing barriers to accessibility of public research data. Our perspective is framed in the context of the predominantly publicly funded global science system. We begin by reviewing the growing role of digital data in research and outlining the roles of stakeholders in the research community in developing data access regimes. We then discuss the hidden costs of closed data systems, the benefits and limitations of openness as the default principle for data access, and the emerging open access models that are beginning to form digitally networked commons. We conclude by examining the rationale and requirements for developing overarching international principles from the top down, as well as flexible, common-use contractual templates from the bottom up, to establish data access regimes founded on a presumption of openness, with the goal of better capturing the benefits from the existing and future scientific data assets. The ‘Principles and Guidelines for Access to Research Data from Public Funding’ from the Organisation for Economic Cooperation and Development (OECD), reported on in another article by Pilat and Fukasaku,6 are the most important recent example of the high-level (inter)governmental approach. The common-use licenses promoted by the Science Commons are a leading example of flexible arrangements originating within the community. Finally, we should emphasise that we focus almost exclusively on the policy—the institutional, socioeconomic, and legal aspects of data access—rather than on the technical and management practicalities that are also important, but beyond the scope of this article
    • 

    corecore