31 research outputs found

    Deterministic ethernet in a safety critical environment

    Get PDF
    This thesis explores the concept of creating safety critical networks with low congestion and latency (known as critical networking) for real time critical communication (safety critical environment). Critical networking refers to the dynamic management of all the application demands in a network within all available network bandwidth, in order to avoid congestion. Critical networking removes traffic congestion and delay to provide quicker response times. A Deterministic Ethernet communication system in a Safety Critical environment addresses the disorderly Ethernet traffic condition inherent in all Ethernet networks. Safety Critical environment means both time critical (delay sensitive) and content critical (error free). Ethernet networks however do not operate in a deterministic fashion, giving rise to congestion. To discover the common traffic patterns that cause congestion a detailed analysis was carried out using neural network techniques. This analysis has investigated the issues associated with delay and congestion and identified their root cause, namely unknown transmission conditions. The congestion delay, and its removal, was explored in a simulated control environment in a small star network using the Air-field communication standard. A Deterministic Ethernet was created and implemented using a Network Traffic Oscillator (NTO). NTO uses Critical Networking principles to transform random burst application transmission impulses into deterministic sinusoid transmissions. It is proved that the NTO has the potential to remove congestion and minimise latency. Based on its potential, it is concluded that the proposed Deterministic Ethernet can be used to improve network security as well as control long haul communication

    A 5G Automated Guided Vehicle SME testbed for resilient future factories

    Get PDF
    Factory automation design engineers building the Smart Factory can use wireless 5G broadband networks for added design flexibility. 5G New Radio builds upon previous cellular communications standards to include technology for “massive machine-type communication” and “ultra-reliable and low-latency communication”. In this work, the authors augment an automated guided vehicle with 5G for additional capabilities (e.g., streaming high-resolution video and enabling long-distance teleoperation), increasing the mobile applications for industrial equipment. Such use cases will provide valuable knowledge to engineers examining 5G for novel smart manufacturing solutions. Our 5G private network testbed is a platform for wireless performance research in industrial locations and provides a development mule for flexible smart manufacturing systems. The rival wireless technology to 5G in industrial settings is Wi-Fi and it is included in the testbed. Furthermore, the authors noted challenges, often unconsidered, facing the move to digital manufacturing technologies. Therefore, the authors summarise the emerging challenges when implementing new digital factory systems, including challenges linked to societal concerns around sustainability and supply chain resilience. The new Smart Factory technologies, including 5G communications, will have their roles to play in alleviating these challenges and ensuring economies have resilient future factories

    A defensive strategy against beam training attack in 5G mmWave networks for manufacturing

    Get PDF
    Millimeter-wave (mmWave) carriers are an essential building block of fifth-generation (5G) systems. Satisfactory performance of the communications over the mmWave spectrum requires an alignment between the signal beam of the transmitter and receiver, achieved via beam training protocols. Nevertheless, beam training is vulnerable to jamming attacks, where the attacker intends to send jamming signals over different spatial directions to confuse legitimate nodes. This paper focuses on defending against this attack in smart factories where a moving Automated Guided Vehicle (AGV) communicates with a base station via a mmWave carrier. We introduce a defensive strategy to cope with jamming attacks, including two stages: jamming detection and jamming mitigation. Developed based on autoencoders, both algorithms can learn the characteristics/features of the received signals at the AGV. They can be employed consecutively before performing the downlink data transmission. In particular, once a jamming attack is identified, the jamming mitigation can be utilized to retrieve the corrupted received signal strength vector, allowing a better decision during the beam training operation. In addition, the proposed algorithm is straightforward and fully compliant with the existing beam training protocols in 5G New Radio. The numerical results show that not only the proposed defensive strategy can capture more than 80% of attack events, but it also improves the average signal-to-interference-plus-noise-ratio significantly, i.e., up to 15 dB

    Experimental Analysis of 5G NR for Indoor Industrial Environments

    Get PDF
    Private 5G networks for industrial users are emerging as one of the leading advanced 5G use cases. This timely work presents a comprehensive experimental analysis of a private 5G network conducted in sparse and dense industrial environments at sub-6 GHz. Measured results of the over-the-air error vector magnitude (EVM) are provided, considering signal-to-noise ratio (SNR) for different 5G new radio modulation and coding schemes (MCSs), bandwidths (BWs) and numerologies (subcarrier spacings) using omnidirectional or directional antenna configurations at the transmitter (TX) and the receiver (RX). Channel sounding measurements are also conducted to characterise the channels in terms of root mean square (RMS) delay spread. The measurement results show that channels in the dense industrial environment have greater RMS delay spreads than in the sparse industrial environment due to strong reflected or scattered multipath components with significant delays. This results in higher EVMs and bit error rates (BERs), i.e., as the RMS delay spread increases, a higher SNR is required to meet the EVM limits. It is also observed that using directional antennas at the TX and RX in both environments reduces the RMS delay spread and hence the inter-symbol interference and the EVM. This allows higher MCS modes (e.g., 64 QAM and 256 QAM) to be used for reliable data transmission, significantly improving the bandwidth efficiency and reducing the latency. When evaluating system performance for different BWs and numerologies, using a lower BW and numerology provides a better system performance (lower EVMs and BERs), especially in dense industrial environments

    Rapid beam training at terahertz frequency with contextual multi-armed bandit learning

    Get PDF
    Terahertz (THz) frequency technology holds great promise for enabling high data rates and low latency, essential for manufacturing applications within Industry 4.0. To achieve these, beam training is necessary to enable MIMO communications without the need for explicit channel state information (CSI). In this context, the Multi-Armed Bandit (MAB) algorithms are able to facilitate online learning and decision-making in beam training, eliminating the necessity for extensive offline training and data collection. In this paper, we introduce three algorithms to investigate the applications of MAB in beam training at Terahertz frequency: UCB, Loc-LinUCB, and Probing-LinUCB. While UCB builds upon the well-established Upper Confidence Bound algorithm, Loc-LinUCB and Probing-LinUCB utilize the location of the user equipment (UE) and probing information to enhance decision-making, respectively. The beam training protocols for each algorithm are also detailed. We evaluate the performance of these algorithms using data generated by the DeepMIMO framework, which simulates abrupt changes and various challenging characteristics of wireless channels encountered in realistic scenarios as UEs move. The results illustrate that Loc-LinUCB and Probing-LinUCB outperform UCB, showing the potential of leveraging contextual MAB for beam training in Terahertz communications

    Sub-6 GHz channel modelling and evaluation in indoor industrial environments

    Get PDF
    This paper presents sub-6 GHz channel measurements using a directional antenna at the transmitter and a directional or omnidirectional antenna at the receiver at 4.145 GHz in sparse and dense industrial environments for a line-of-sight scenario. Furthermore, the first measured over-the-air error vector magnitude (EVM) results depending on different 5G new radio modulation and coding schemes (MCSs of16 QAM, 64 QAM and 256 QAM) are provided. From the measurement campaigns, the path loss exponents (PLE) using a directional and an omnidirectional antenna at the receiver in the sparse and the dense environment are 1.24/1.39 and 1.35/1.5, respectively. PLE results are lower than the theoretical free space PLE of 2, indicating that indoor industrial environments have rich multipaths. The measured power delay profiles show the maximum root mean square (RMS) delay spreads of 11 ns with a directional antenna and 34 ns with an omnidirectional antenna at the receiver in a sparse industrial environment. However, in a dense industrial environment the maximum RMS delay spreads are significantly increased: maximum RMS delay spreads range from 226 to 282 ns for the omnidirectional and the directional antenna configuration. EVM measurements show that to increase coverage and enable higher MCS modes to be used for reliable data transmission, in both industrial environments using a directional antenna at the transmitter and the receiver is required. The large-scale path loss models, multipath time dispersion characteristics and EVM results provide insight into the deployments of 5G networks operating at sub-6 GHz frequency bands in different industrial environments

    Lupus nephritis in Chinese children--a territory-wide cohort study in Hong Kong

    Get PDF
    We report a multicenter study of Chinese children in Hong Kong with systemic lupus erythematosus (SLE) nephritis. Children were included if: they fulfilled the ACR criteria, had significant proteinuria or casturia, were Chinese and younger than 19 years and had been diagnosed with SLE between January 1990 and December 2003. Investigators in each center retrieved data on clinical features, biopsy reports, treatment and outcome of these patients. There were 128 patients (eight boys, 120 girls; mean age: 11.9+/-2.8 years). About 50% presented with multisystem illness and 40% with nephritic/nephrotic symptoms. Negative anti-dsDNA antibodies were found in 6% of the patients. Renal biopsy revealed WHO Class II, III, IV and V nephritis in 13 (10%), 22 (17%), 69 (54%) and 13 (10%) patients, respectively. The clinical severity of the nephritis did not accurately predict renal biopsy findings. The follow-up period ranged from 1 to 16.5 years (mean+/-SD: 5.76+/-3.61 years). During the study five patients died (two from lupus flare, one from cardiomyopathy, two from infections). Four patients had endstage renal failure (ESRF) (one died during a lupus flare). All deaths and end-stage renal failure occurred in the Class IV nephritis group. Chronic organ damage was infrequent in the survivors. The actuarial patient survival rates at 5, 10 and 15 years of age were 95.3, 91.8, and 91.8%, respectively. For Class IV nephritis patients, the survival rates without ESRF at 5, 10, and 15 years were 91.5, 82.3 and 76%, respectively. The survival and chronic morbidity rates of the Chinese SLE children in the present study are comparable to those of other published studies.postprin
    corecore