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A Defensive Strategy Against Beam Training Attack
in 5G mmWave Networks For Manufacturing

Son Dinh-Van, Tiep M. Hoang, Berna Bulut Cebecioglu, Daniel S. Fowler, Yuen Kwan Mo, and Matthew D.
Higgins, Senior Member, IEEE

Abstract—Millimeter-wave (mmWave) carriers are an essential
building block of fifth-generation (5G) systems. Satisfactory
performance of the communications over the mmWave spectrum
requires an alignment between the signal beam of the transmitter
and receiver, achieved via beam training protocols. Nevertheless,
beam training is vulnerable to jamming attacks, where the
attacker intends to send jamming signals over different spatial
directions to confuse legitimate nodes. This paper focuses on
defending against this attack in smart factories where a moving
Automated Guided Vehicle (AGV) communicates with a base
station via a mmWave carrier. We introduce a defensive strategy
to cope with jamming attacks, including two stages: jamming
detection and jamming mitigation. Developed based on autoen-
coders, both algorithms can learn the characteristics/features
of the received signals at the AGV. They can be employed
consecutively before performing the downlink data transmission.
In particular, once a jamming attack is identified, the jamming
mitigation can be utilized to retrieve the corrupted received
signal strength vector, allowing a better decision during the
beam training operation. In addition, the proposed algorithm
is straightforward and fully compliant with the existing beam
training protocols in 5G New Radio. The numerical results show
that not only the proposed defensive strategy can capture more
than 80% of attack events, but it also improves the average
signal-to-interference-plus-noise-ratio significantly, i.e., up to 15
dB.

Index Terms—Attack detection, beam training, beam training
attack, machine learning, mmWave, PHY-layer security, 5G.

I. INTRODUCTION

The fifth generation (5G) of mobile communications is
playing a key role in solving the growing demand for mobile
data and future business applications through the delivery
of multi-Gbps ultra-low-latency high reliability connections.
Primary verticals for deployment include Industry 4.0, health
care, tactile entertainment, future finance, and autonomous
transportation [1]. In the context of Industry 4.0 and/or man-
ufacturing, process productivity, efficiency and quality gains
can be found from automated robotic systems such as AGVs.
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Such gains, however, are only achievable if the machines are
truly flexible and completely mobile. Thus the 5G eco-system
is seen as the key connectivity enabler to supersede what was
only possible using a wired (typically Ethernet) infrastructure.

Due to the explosive growth of mobile data demand, 5G
networks would make use of spectrum in the millimeter-
wave (mmWave) bands to improve communication capacities
even further [2]. Nevertheless, wireless communications at
mmWave frequencies are challenging due to severe free-space
path-loss and atmospheric absorption. Owing to the beamform-
ing gain, highly directional transmission links, typically using
antenna arrays with proper signal processing techniques, can
be used to overcome this issue. Directional links, however,
require a fine alignment between the transmitter and receiver
beams, achieved via a set of operations known as beam
training [3]. In particular, beam training allows the transmitter,
such as the 5G base station (BS), to transmit reference signals
(RSs) sequentially using multiple beams over various spatial
directions. Subsequently, the user equipment (UE) measures
the received signal strength (RSS) corresponding to each beam
before determining the best beam that provides the strongest
RSS, followed by a report of beam selection back to the BS
[4], [5]. The beam training procedure is essential for wireless
communications at mmWave since a beam misalignment might
lead to a degradation in the channel gain between transceivers
[4].

Despite recent developments, 5G technologies are still under
active investigation, and many obstacles and issues remain.
One key concern is a secured beam management procedure
at the physical (PHY) layer. Due to the broadcast nature of
wireless communications, an adversary can overhear and jam
transmissions. In the context of 5G mmWave, the adversary
can launch a jamming attack targeting the beam training
procedure, causing 5G devices to make the incorrect beam
selection decision and reducing the data rate enormously.

Machine learning (ML) is anticipated to play a crucial part
in the evolution of 5G, the Industrial Internet of Things (IIoTs),
and manufacturing. ML also enjoys much promise in improv-
ing security for the 5G wireless communication systems at
the PHY layer [6], [7]. In this vein, we consider including
ML in the beam training procedure to defend against jamming
attacks in the context of manufacturing. Given that malicious
attacks can cause severe damage to plant equipment, disrupt
the mass production process, and the loss of confidential
information, the use of ML for securing 5G communications
in manufacturing is of salient significance.



A. Related Research

In mmWave communications, analog beamformers are nor-
mally selected from a codebook consisting of beam patterns
at different resolutions using a beam training strategy. Each
beamforming given in the codebook directs transmission in a
particular angular direction. There is various research concen-
trating on beam training for mmWave communications. One
common method is to use an iterative process to measure
the RSS over its codebook [4], [5], [8], for discovering
the angular directions of the strongest signal between the
transmitter and receiver without explicit channel estimation.
This training method has also been implemented in standards
such as IEEE 802.15.3c, IEEE 802.11ad, and WirelessHD
[2]. More sophisticated discovery techniques were also studied
such as channel-sparsity-based beam training [9], and context-
information-based search [10]. Recently, ML has also been
adopted extensively for beam training in 5G mmWave com-
munications [11]–[13].

The 5G PHY-layer vulnerability was studied in [14]–[17].
In particular, the research proposed in [14] investigated the
impact of jamming attacks on the physical downlink control
channel (PDCCH) and RS in 5G communications. The study
showed that jamming attacks are highly effective and can be
used to disrupt any 5G UE communications. The authors in
[15] developed two adversarial attack strategies to fool the
deep learning models built for dynamic spectrum sharing and
signal authentication in network slicing. In [16], the authors
designed a malicious attack against learning-based beam train-
ing for 5G mmWave networks. Herein, a deep neural network
was trained to enhance the robustness and latency of the beam
selection process. To attack, the jammer adds a perturbation,
which is designed carefully, to the neural network input so
that the legitimate 5G user fails to classify beam patterns.
However, this study did not consider the effects of the wireless
channel. Since the wireless channel is stochastic and highly
dynamic, the perturbation design should consider the channel
state information (CSI). More recently, in [18], the authors
also raised security concerns related to deep learning-based
beam training for mmWave communications. It stated that
despite an increase in cellular performance, the security and
privacy issues of ML in 5G and beyond networks are still being
ignored. Thus, the study developed a defended ML-based
beam prediction against adversarial attacks, which achieves a
nearly identical performance to the undefended model without
attack.

More relevant to jamming attack detection, in [19], [20], the
authors employed a statistical-based technique for jamming
detection in a non-coherent massive single-input multiple-
output (SIMO) communication and an OFDM-based industrial
system. However, there are two main limitations of the statis-
tical method. Firstly, the channel might not follow any specific
statistical distribution, particularly in industrial settings where
the distribution might undergo a sudden shift. Secondly, fitting
the distribution normally is normally complicated, leading
to a noticeable latency and significant modification to the
existing protocols. In comparison, ML does not rely on any
assumptions about channel distribution. Instead, it is capable

of learning the general pattern of information and identify-
ing the anomalies. Furthermore, since feeding inputs into a
deep neural network is a process that resembles a series of
optimized calculations, its online performance is low latency.
The research proposed in [21] presented a ML-based (i.e.,
random forests, support vector machine) jamming detection
approach for IEEE 802.11 networks. A detection method was
developed in [22] using the time series analysis in which the
network measurements were modeled as time series, and the
sequential change-point detection algorithm was applied to
detect the change of state. The authors in [23] also adopted a
ML-based technique to detect pilot contamination attacks in
5G IoT networks. It is designed based on the multipath channel
characteristics of mmWave frequencies, i.e., the reflection and
refraction are sensitive to the transceiver locations. Recently,
more sophisticated methods were introduced. For example, the
research in [24] suggested deploying unmanned aerial vehicles
(UAVs) to assist in the prevention and detection of attacks in
5G networks since UAVs can locate the jamming signal source
faster than ground vehicles and without human intervention.

There are very limited studies ( [16], [18]) focusing on the
security aspect of beam training procedure in 5G communica-
tions. The research proposed in [16] only aimed at designing
attack strategies to manipulate the beam determination without
considering the effect of channel fading. In addition, the study
did not consider jamming detection or mitigation. Wireless
attacks are not the main focus of [18]. Instead, the study
investigated a scenario in which the beam prediction model
is poisoned by mobile malware or copied mobile. It is also
important to note that the research proposed in [16], [18]
considered a scenario where deep learning is utilized for beam
determination. However, this approach has not yet been offi-
cially approved by any standards or implemented in industrial
settings. Our research, on the other hand, focuses on the beam
sweeping method, a well-established and widely-used tech-
nique in industrial standards such as IEEE 802.15.3c, IEEE
802.11ad, and WirelessHD. As the channel characteristics vary
depending on the locations of the transceiver, the detection
method proposed in [23] might be suitable for deterministic
scenarios only. Besides the jamming detection capability, a
defensive strategy should be able to eliminate or alleviate the
impact of jamming attacks. The research proposed in [7], [19],
[21]–[23] only focused on jamming detection, which despite
its usefulness, is still incapable of thwarting jamming threats.

In this research, we aim to address the issue of overlooked
security in beam training. We will show that a simple jam-
ming attack can still severely impact the beam determination
process, resulting in a deterioration of signal-to-interference-
plus-noise-ratio (SINR) performance. To address this issue, we
propose a defensive algorithm that is capable of detecting and
mitigating jamming attacks.

B. Main Contributions

The main contributions of our work may now be summa-
rized as follows. Firstly, we investigate the security aspect
of the beam training procedure in mmWave communications
for manufacturing where there is a so-called BS performing
a downlink communication with a moving robotic vehicle, so



called AGV. Our research takes into account the movement
of the AGV, unlike prior studies that only considered de-
terministic locations. The significant change of the channel
distribution during AGV movement poses a challenge in
detecting jamming attacks. In practice, this can also be a
consequence of the dynamic nature of industrial environments,
where the surrounding environment is rapidly changing. To
attack, the so-called Attacker confuses AGV during the beam
training by transmitting jamming signals over various spatial
directions. This attack method is distinct from the adversar-
ial attacks proposed in [16], [18] targeting ML-based beam
prediction only. Our second contribution is the development
of a defensive strategy consisting of two stages, which are:
(1) jamming detection and (2) jamming mitigation. For the
first stage, we develop a jamming detection autoencoder (so-
called JDAE), which can be trained effectively without any
prior knowledge of Attacker. In the second stage, we build a
jamming mitigation autoencoder (so-called JMAE) to coun-
teract the effects of jamming and recover the RSS vector at
the AGV. Both algorithms rely on the RSS information and
can be easily integrated into existing protocols used for beam
training in 5G, requiring minimal modifications. Our research
not only focuses on jamming detection but also extends to the
investigation of anti-jamming countermeasures, an aspect that
has not been addressed in previous studies such as [19], [21]–
[23]. Finally, numerical results provided to benchmark the
proposed defensive strategy show that with a proper parameter
setting, JDAE can obtain a satisfactory detection performance.
Furthermore, when jamming attacks are detected, JMAE effec-
tively reduces their destructive impact, resulting in an average
improvement in SINR performance of over 15 dB as compared
to the scenario in which the jamming mitigation technique is
not employed.

Notation: Throughout this paper, we use lowercase and
uppercase boldface letters to represent vectors and matrices,
respectively. The transpose of X is denoted by XT. Further-
more, X ∼ CN (M,V) denotes that X is a complex Gaussian
matrix with mean matrix M and covariance matrix V. The
operator ∥.∥ is the Euclidean norm.

II. SYSTEM MODEL

In this paper, we consider the wireless downlink communi-
cation system in a smart factory, which comprises the AGV,
one legitimate BS, and one illegitimate Attacker. For the sake
of tractability, we use subscripts A and B to represent the terms
related to Attacker and BS, respectively. While AGV has only
a single antenna, BS and Attacker are equipped with an array
of NB and NA antenna elements and a codebook WB and
WA, respectively. The detailed design of WB and WA will
be described in Section II-D. We consider a manufacturing
environment where AGV follows a predetermined trajectory
for tracking and transporting heavy materials. Industrial set-
tings often exhibit unique characteristics affecting the radio
wave environment and transmissions due to their physical
features such as floor plans, layouts of metallic machines and
work cells. Hence, to maintain a good wireless communication

link between BS and AGV, the beam alignment needs to be
obtained via a set of protocols, so-called beam training1.

A. Beam Training Procedure

Assume that BS has a predefined codebook WB ≜
[w1

B,w
2
B, · · · ,wMB

B ] ∈ CNB×MB , where MB is the codebook
size and each beamforming vector wk

B specifies a transmit
pattern. For convenience, we denote the ID of the beamform-
ing vector wn

B as n.2 In general, there are various operations
categorized under the term beam training, which is composed
of four different operations, as illustrated in Fig. 4(a). These
operations are described as follows:

• Beam sweeping: In the time slot t, BS broadcasts a
Synchronization Signal (SS) burst denoted as sB(t) ≜
[s1B(t), s

2
B(t), · · · , sMB

B (t)] using each beamforming vec-
tor in WB. Herein, snB(t) is the RS transmitted by BS
using the beam n.

• Beam measurement: During this phase, the evaluation of
the RSS is performed at AGV after receiving the SS burst.
In other words, let r(t) ≜ [r1(t), r2(t), · · · , rMB(t)]
be the signal sequence received by AGV in the time
slot t, its corresponding RSS vector, denoted as g(t) ≜
[g1(t), g2(t), · · · , gMB(t)], is measured during this phase.

• Beam determination: Based on the beam measurement,
AGV selects the beam which provides the maximum RSS.
In other words, during this step, AGV determines a beam
m satisfying m = argmax

n
{gn(t)}.

• Beam reporting: This is a procedure used by AGV
to report beam quality (i.e., g(t)) and beam decision
information (i.e., beam m) to BS. Based on this, BS
initiates the downlink data transmission with AGV in the
time slot t using the beam m.

B. Attack Strategy

Generally speaking, when it comes to PHY-layer security,
compared to lower frequencies, wireless communications are
more secure at the mmWave frequencies when combined with
high directional antennas. If the CSI to the target is not
available, it is challenging for Attacker to launch an attack due
to the high path-loss at the mmWave frequencies. To address
this, it simply breaks through the legitimate communication
system by sequentially transmitting jamming signals toward
different spatial directions. In other words, Attacker also
performs beam sweeping simultaneously with BS, by using all
of the codewords available in its codebook, WA. This attack
can manipulate the RSS vector at AGV, hence a poor decision
in the beam determination step. If Attacker employs a high
jamming power for the attack, AGV can be fooled easily and
might determine a beam ID that is more favorable for Attacker
than BS.

C. Channel Model

We assume the Rician channel fading model for the links
from BS or Attacker to AGV, consisting of a line-of-sight

1In some research [3], it is also known as beam management.
2Henceforth, we refer beam n as the n-th beamforming vector in the

codebook, i.e., wn
B for BS and wn

A for Attacker.



(LoS) path and multiple non-line-of-sight (NLoS) paths. Since
AGV might move, we adopt the time-varying geometric chan-
nel model when the Doppler effect is introduced [2], [25]. To
be more specific, the channel between BS (or Attacker) and
AGV in the time slot t are modeled as follows

hi(t) =
√
βi e

j2πfDtTs × h̃i(t), (1)

where i ∈ {A,B}. Additionally, βi represents the large-scale
fading coefficient of the considered link while fD is the
Doppler shift and Ts stands for the transmit symbol interval.
Finally, the term h̃i(t), which consists of one LoS path and
Li non-LoS paths, can be expressed as follows [2]

h̃i(t)=

√
Ki

Ki + 1
hL
i +

√
1

Ki + 1

Li∑
j=1

αj
i ai(θ

j
i ), (2)

where Ki,k stands for the Rician-K factor of the considered
link. Moreover, hL

i denotes the deterministic LoS component,
αj
i is the complex channel gain from BS (or Attacker) to AGV

following the j-th scattered NLoS path, ai(θ) is the transmitter
steering vector associated with the angle of departure (AoD) θ
at BS or Attacker. Finally, θji ∈ [0, 2π] stands for the AoD of
the j-th scattering signal. Herein, for notational convenience,
we drop the time index since αj

i and θji are random variables.
Considering only the azimuth and neglecting elevation

imply that all scattering happens in azimuth, thus, BS and
Attacker implement horizontal (2D) beamforming only. The
steering vector at the BS or Attacker can be expressed as

ai(θ) ≜
1√
Ni

[
1, ej

2π
λ di sin θ, · · · , ej(Ni−1) 2π

λ di sin θ
]T

, (3)

with ∀θ ∈ [0, 2π] and i ∈ {A,B}.

D. Codebook Based mmWave Precoding Design

For a phased antenna array, an RF codebook can be rep-
resented by a matrix, where each column specifies a trans-
mit pattern. Particularly, let W be an N × M predesigned
codebook matrix, where M is the codebook size and N
is the number of antenna array elements, there are several
common RF codebooks, such as the codebook proposed in
IEEE 802.15.3c and wireless personal area networks (WPAN)
[26] or the discrete Fourier transform (DFT) codebook [27].

The codebook utilized in IEEE 802.15.3c and WPAN is to
simplify hardware implementation. The codebook is relatively
simple since it is generated with a 90-degree phase resolution
without amplitude adjustment to reduce power consumption.
In particular, the elements of the codebook are given as [26]

W(n,m) =
1√
N

j

⌊
4n×mod(m+M

4
,M)

M

⌋
, (4)

with ∀n ∈ N ,∀m ∈ M where N = {0, 1, · · · , N − 1}
denotes the set of antennas and M = {0, 1, · · · ,M − 1} is
the set of beam patterns in the codebook. Additionally, ⌊·⌋
represents the floor function.

In practice, DFT codebooks are widely used as they can
match approximately the optimal beamforming. In addition,
they also can achieve higher antenna gains at the beam
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directions than the codebooks used in IEEE 802.15.3c. The
entries of a DFT codebook are defined as [27]

W(n,m) =
1√
N

e−j2π nm
N , (5)

with ∀n ∈ N ,∀m ∈ M.
Fig. 1 demonstrates the polar plots of array factor for two

codebooks using (4) and (5) with a resolution of 3 bits, which
points out that compared to the IEEE 802.15.3c codebook,
the DFT codebook can achieve higher antenna gains at the
beam directions with reduced side lobes and a better beam
resolution.

E. Received Signal Model at AGV

To model the received SS burst at AGV, we will take
into account the path-loss, scattering, and codebook design
described in Sections II-C and II-D. In general, the presence
of Attacker leads to the following hypotheses:

• Hs: Attacker stays silent.
• Ha: Attacker breaks into the system.
For simplicity, we consider a scenario where Attacker and

BS have an identical codebook size M , the extension is
possible. In the time slot t, the SS burst received at AGV can



be described as r(t) = [r1(t), r2(t), · · · , rM (t)]T ∈ CM×1.
Herein, rn(t) is the RS received at AGV in the case when
BS utilizes the beam n. To be more specific, rn(t) can be
modeled as

rn(t)=

{√
PBh

T
Bw

n
Bs

n
B + n(t), under Hs;√

PBh
T
Bw

n
Bs

n
B +

√
PAh

T
Aw

n
As

n
A + n(t), under Ha,

(6)

where snA and snB are the n-th data symbol in the SS burst
transmitted by Attacker and BS, respectively whereas n(t) ∼
CN (0, N0) with N0 represents the noise power. In addition,
PA and PB denote the transmit power of Attacker and BS,
respectively.

During the measurement step, the RSS vector measured by
AGV can be achieved as g(t) = [g0(t), g1(t), · · · , gM (t)]T ∈
RM×1 where gn(t) is the RSS measured for the received signal
rn(t), calculated as

gn(t)=

{
PB

∣∣hT
Bw

n
B

∣∣2 +N0, under Hs;

PB

∣∣hT
Bw

n
B

∣∣2 + PA

∣∣hT
Aw

n
A

∣∣2 +N0, under Ha.
(7)

Let m = argmax
n

{gn(t)}, which means that AGV selects
the beam m for the downlink data transmission. As a result,
during the primary data transmission, the SINR received at
AGV in the time slot t can be written as

SINR(t) =
PB

∣∣hT
Bw

m
B

∣∣2
PA

∣∣hT
Aw

m
A

∣∣2 +N0

. (8)

Fig. 2 shows an example of the RSS vector measured
at AGV during the beam training step in two scenarios:
under attack and non-attack. Based on the RSS vector, AGV
decides which beam is the best for use in the downlink data
transmission. In particular, when there is no attack, beam 44
will be selected as it provides the highest RSS value of nearly
−60 dBm. However, when Attacker performs jamming attacks,
the RSS vector is manipulated with the highest value of −50
dBm corresponding to the beam 16. As a result, AGV, fooled
by the jamming signals transmitted by Attacker, will make a
poor decision by selecting the beam 16. Unfortunately, as we
can see, if BS utilizes this beam, the desired signal strength
will be noticeably low, which is about 34 dB lower than that
in the case of no attack. This points out that such attacks,
despite relative simplicity, might cause a deterioration of the
mmWave communications.

III. JAMMING ATTACK DETECTION STRATEGY

This section describes how to train a ML model, the so-
called Jamming Detection Autoencoder (JDAE), to learn the
underlying patterns of normal data samples when AGV moves
along its trajectory, thereby distinguishing them from the
abnormal samples. In addition, the detailed mechanism for
data normalization, parameter setting, and online jamming
detection will also be discussed.

A. Data Generation

For each time slot t, AGV obtains an RSS vector g(t)
which can be utilized not only for beam determination but
also for jamming attack detection. For tractability, we use

TABLE I
AUTOENCODER ARCHITECTURE OF JDAE & JMAE

Network Layer type Number of neurons

Encoder Input M

Fully connected + Elu ⌊M/21⌋
Fully connected + Elu ⌊M/22⌋
· · · · · ·
Fully connected + Elu 4

Decoder Input 4

· · · · · ·
Fully connected + Elu ⌊M/22⌋
Fully connected + Elu ⌊M/21⌋
Fully connected + Linear M

the notations gHs(t) and gHa(t) to indicate the RSS vector
achieved at AGV in the event Hs and Ha during the time
slot t, respectively. This information will enable the legitimate
system to build datasets, and then learn the underlying patterns
of the RSS vector in legitimate scenarios.

AGV will perform a moving average in each time slot to
reduce the channel variation effect. For instance, the average
RSS vector computed by AGV at the time slot t, defined
as the average of W RSS vectors measured during W prior
consecutive time slots, can be expressed as

xi(t) ≜
1

W

t∑
t+1−W

gi(t), (9)

where xi(t) ∈ RM×1, W represents the time window length,
and i ∈ {Hs,Ha}. It is important to note that as we do not
have any prior knowledge of Attacker, the training dataset will
only be associated with the Hs events solely. To put it simply,
it is possible to construct the training data under the hypothesis
Hs, defined as

Xtrain
JD =

{
xHs

[0],xHs
[1], · · · ,xHs

[Ntrain]
}
, (10)

where Ntrain stands for the number of training data samples.
Regarding the test dataset, it is necessary to consider both

the case of Attacker being absent and present. As a result, the
test dataset can be represented as follows

Xtest
JD =

{
xHs [Ntrain + 1], · · · ,xHs [Ntrain +NHs,test]︸ ︷︷ ︸

normal data samples

,

xHa
[0],xHa

[1], · · · ,xHa
[NHa,test]︸ ︷︷ ︸

abnormal data samples

}
, (11)

where NHs,test and NHa,test indicate the number of data
samples associated to the event Hs and Ha in the test dataset,
respectively. In our experiments, we opt for NHs,test =
NHa,test = Ntest to ensure the fairness and balance between
the normal and abnormal events in the testing phase. Note
that the dataset Xtest

JD will not be used for training ML models
since Attacker is anonymous.

B. The Architecture of JDAE

Since the identity of Attacker is normally unknown to the
legitimate system, only the data samples in Hs are available



for training ML models. Therefore, an unsupervised learning
technique is suitable for this scenario. Autoencoders (AEs) are
ML architectures in which neural networks are leveraged for
the task of representation learning. A typical AE architecture
comprises two networks, namely encoder, and decoder. In par-
ticular, while the encoder network translates the original high-
dimension input into a latent low-dimensional layer located
in the middle of the AE, the decoder network computes the
data from the latent layer to generate a reconstructed version
of the original input data. To put it simply, assume that the
AE represents a mapping function f(.), if the input is x, it
generates an output x′ = f(x) so that x′ is as identical to x
as possible.3 During training, as a benefit of the compression
process, the AE is capable of filtering out atypical features of
the data and retaining only the significant characteristics. In
the context of anomaly detection, the AE can learn the pattern
of the normal data samples, thereby identifying the anomalous
data points.

Regarding the architecture of JDAE, we utilize a typical AE
with several fully connected layers, each followed by a layer
including Elu activations. JDAE also consists of an encoder
and a decoder network whose architectures are symmetric
across the latent layer, as illustrated in Table I. The encoder
receives the average RSS vector x(t) as the input and then
compresses it at the latent layer. Subsequently, the decoder
attempts to map the signal represented at the latent layer back
to the original input signal. Note that, unlike other layers in
JDAE, the output layer of the decoder has linear activations
since the output represents the reconstructed version of the
input data.

C. Training, Testing Strategy and Online Jamming Detection

1) Data Normalization: Data normalization plays an essen-
tial role in training ML models. In this work, a data sample
x is normalized as follows

xnormalize ≜
x− µJD

σJD
, (12)

where µJD and σJD represent the mean and standard deviation
of the RSS values in Xtrain

JD , respectively. It is also worth
noting that µJD and σJD are determined by computing the
training dataset, prior to the training phase.

2) Training Strategy: To capture the underlying pattern of
the normal data samples, JDAE needs to be trained on normal
data samples only, i.e., Xtrain

JD . During the training process,
JDAE attempts to reconstruct each data sample in the training
dataset by minimizing the following loss function

L(θ) = 1

B

B∑
i=0

∥xnormalize[i]− x′
normalize[i]∥

2
, (13)

where θ denotes the “learnable” parameters of the AE (in-
cluding weights and biases), B is the batch size, i.e., the
number of data samples feeding the AE model in each iteration
and xnormalize[i] is the normalized value of the i-th data
sample x[i] in Hs. Note that L(θ) is also often termed as the

3We henceforth denote x′ as the output generated by the AE if the input
data is x.

Algorithm 1: Jamming detection algorithm
Data: µJD and σJD determined from the offline

training phase, a pre-defined window length W.
Input: The RSS vector g(t) measured at time slot t.
Result: outcome, assigned True if there is an attack;

otherwise False.
1 Construct the average RSS vector x(t) using (9);
2 Compute the normalized average RSS vector

xnormalized(t) using (12);
3 Input xnormalized(t) into JDAE and compute the

reconstructed signal x′
normalized(t);

4 Compute the reconstruction loss as follows
loss = 1

M ∥xnormalized(t)− x′
normalized(t)∥

2;
5 if loss > Lth then
6 outcome = True

7 else
8 outcome = False

9 end
10 return outcome

reconstruction loss. The model parameter θ can be updated
for each batch of B data samples using stochastic gradient
descent (SGD) algorithm as follows

θ := θ − η ▽L(θ), (14)

where η is the learning rate and ▽L(θ) is the gradient of L(θ)
with respect to θ. In this work, we adopt an advanced SGD
method, so-called the adaptive moment estimation (Adam) for
updating θ.

3) Online Inference and Attack Detection: After training,
jamming attacks can be detected by evaluating how well the
JDAE can reconstruct the normalized input samples. In this
context, since JDAE was trained on Xtrain

JD containing the
normal RSS vectors only, it captures the characteristics of
normal data samples, thereby identifying the jamming attacks
if a significant difference is detected. The reconstruction
loss can be employed to evaluate this. Particularly, once the
reconstruction loss calculated for input is greater than a pre-
defined threshold Lth, we can infer that an unfamiliar pattern
occurs, which can be labeled as a jamming attack. Hence,
setting Lth has a great impact on detection performance. Since
Attacker is anonymous, we introduce a method for setting
Lth only based on the training data Xtrain

JD . In particular, after
training the AE, it is possible to construct a reconstruction loss
vector r ∈ RNtrain×1 whose each element is the reconstruction
loss value for each data point in Xtrain

Hs
. Let µr and σr be

the mean and standard deviation of r, respectively, and the
detection threshold parameter can be set as

Lth = µr + ασr, (15)

where α is a parameter used for adjusting the sensitivity of
the detection algorithm.

After the training and offline fine-tuning, JDAE will be
employed online at AGV for jamming attack detection. During
each time slot t, the average RSS vector x(t) is computed as in
(9), then normalized as in (12), before being fed into JDAE.
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THE CONFUSION MATRIX
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TP FP

NTP samples NFP samples

(Ha)
FN TN

NFN samples NTN samples

Subsequently, the reconstruction loss is calculated, followed
by a comparison with Lth to determine whether there is a
jamming attack. The algorithm utilized for jamming attack
detection is now summarized in Algorithm 1.

Remark 1. The parameter α determines the sensitivity of the
detection algorithm toward jamming attacks. On the one hand,
when α → −∞, we have Lth → −∞, which means that
all events will be identified as jamming attacks. On the other
hand, in the case when α → +∞, we have Lth → +∞, which
means that all events will be labeled as non-attack. In general,
setting a higher value of α reduces the sensitivity toward
jamming attacks. Hence, introducing α improves flexibility for
the detection algorithm to be suitable for various applications.

4) Testing Strategy: The testing dataset Xtest
JD now can be

utilized for evaluating the performance of the trained AE. With
two types of data samples available in Xtest, there are four
possible detection outcomes listed as follows:

• True positive (TP): Hs samples are correctly detected.
• True negative (TN): Ha samples are correctly detected.
• False positive (FP): Hs samples are incorrectly detected

as Ha.
• False negative (FN): Ha samples are incorrectly detected

as Hs.

These events are the elements of the so-called confusion
matrix, illustrated in Table II. Herein, NTP, NTN, NFP and
NFN represent the number of data samples identified with the
outcome TP, TN, FL, and FN, respectively. Given these metrics
and recall that the number of attack and non-attack samples
are equal in the testing data, the accuracy (ACC), which is
the probability of an event classified correctly, can be used
to evaluate the performance of the detection algorithm. In
particular, ACC can be written as

ACC =
NTP +NTN

NTP +NTN +NFP +NFN
. (16)

In addition, it is also important to investigate the receiver
operating characteristic (ROC) curve which characterizes the
metrics true positive rate (TPR) and false positive rate (FPR)
for various detection thresholds. In particular, TPR and FPR

can be defined as

TPR =
NTP

NTP +NFN
, FPR =

NFP

NFP +NTN
. (17)

Algorithm 2: Jamming mitigation algorithm
Data: µJM and σJM executed from training.
Input: The corrupted RSS vector g(t) measured at

time slot t.
Result: The reconstructed RSS vector ĝ(t)

1 Compute the normalized average RSS vector
gnormalized(t) using (24);

2 Input gnormalized(t) into JMAE and compute the
reconstructed signal g′

normalized(t);
3 Compute the denormalization of the output via

ĝ(t) = g′
normalized(t)× σJM + µJM;

4 return ĝ(t)

Algorithm 3: Defensive strategy by JDAE and JMAE

1 Perform jamming detection via Algorithm 1;
2 if outcome = True then
3 Perform jamming mitigation via Algorithm 2
4 else
5 Skip

6 end
7 return RSS vector

IV. JAMMING MITIGATION STRATEGY

Once an attack is detected successfully, one of the most
natural questions is how to cope with it. In the context of
PHY-layer security, a simple method is to utilize high transmit
power on the jammed channels to compete actively with the
attackers [28]. Another popular anti-jamming countermeasure
is the channel hopping technique which allows the legitimate
system to switch to another channel selected either randomly
or according to a pre-defined method [29]. This section
presents an alternative strategy, known as jamming mitigation,
to reduce the impact of jamming signals, and recover the
RSS vector so that AGV can make a better decision in
the beam determination step. This strategy employs an ML
model, developed based on denoising autoencoders (DAEs)
and JMAE.

A. Jamming Attack Mitigation Based on DAEs

DAEs enjoy a plethora of applications in image processing
and computer vision. Unlike the conventional AEs, which copy
the input to the output, DAEs use corrupted data as the input
and uncorrupted data as the output. By doing this, not only
can the DAEs learn to compress data like the AEs, but it
also can remove noise from the corrupted input. Inspired by
this fundamental, JMAE can also be trained to eliminate the
jamming signals from the corrupted RSS vector. JMAE has an
identical architecture to JDAE, as illustrated in Table I. Note
that, however, the data used for training JMAE is different
from that for training JDAE.

B. Training Strategy

During the training, the RSS vectors corrupted by jamming
attacks will be used as the input, while the corresponding un-
corrupted RSS vector (also known as desired RSS vector) will
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be used as the output. However, due to the unknown identity of
Attacker, the training data, including the corrupted RSS and
the corresponding desired RSS vectors, is not available yet.
To circumvent this issue, we build synthetic data for training
JMAE. The synthetic data is the combination of two datasets,
namely desired and jamming datasets, defined as follows:

Xdesired =
{
gHs

[0],gHs
[1], · · · ,gHs

[Ndesired]
}
, (18)

Xjam =
{
jam[0], jam[1], · · · , jam[Njam]

}
, (19)

where Ndesired and Njam denote the number of data samples
in the desired and jamming datasets, respectively. Moreover,
jam[i] stands for the i-th jamming signal recorded at AGV, not
including the desired signal. While Xdesired is readily available
at AGV, Xjam needs to be obtained via a channel sensing
technique.

To be more specific, the training data is built via two steps:
• Channel sensing: This phase is performed once a jam-

ming attack is detected, in which BS stops transmitting
the reference signals temporarily while AGV attempts to
collect the jamming signals transmitted by Attacker. By
doing this, Xjam can be achieved. Note that the size of the
jamming dataset depends on the channel sensing period.

• Data synthesis: During this step, a synthetic training
dataset can be built by combining Xjam and Xdesired.
The synthetic training data can be formulated as

Xtrain
JM =

{
ˆrss[0], ˆrss[1], · · · , ˆrss[N train

JM ]
}
, (20)

Ytrain
JM =

{
rss[0], rss[1], · · · , rss[N train

JM ]
}
, (21)

where Xtrain
JM and Ytrain

JM are used for the input and
output of JMAE during training, respectively. In addition,
N train

JM is the number of samples in the synthetic training
data, while ˆrss[i] and rss[i] represent the i-th corrupted
RSS vector and its corresponding uncorrupted signal,
respectively. These are constructed as follows

ˆrss[i] = ds+ jm, (22)
rss[i] = ds, (23)

where ds and jm are a data sample drawn randomly from
Xdesired and Xjam, respectively.

The channel sensing procedure enables the AGV to gather in-
formation about the Attacker, while the data synthesis process
is carried out to construct a dataset where the desired signal
can be suppressed by different jamming signals. It is important
to note that the JMAE only needs to be trained once prior to
deployment. Regarding the data normalization, we normalize
a RSS vector as follows

gnormalized ≜
g − µJM

σJM
, (24)

where µJM and σJM represent the mean and standard deviation
of the elements in Xtrain

JM , respectively. With the synthetic
dataset, we now can train JMAE using a similar training
technique to JDAE.

C. Online Jamming Mitigation and Defensive Strategy

After training, JMAE can be used to retrieve the original
RSS vector once the legitimate system is under attack. The
algorithm employing JMAE for jamming mitigation is sum-
marized in Algorithm 2. Fig. 3 demonstrates an example of
the RSS vector obtained by utilizing JMAE, contrasted with
the desired RSS vector. Herein, N train

JM = 104, Ndesired = 104

and Njam = 103. As we can see, despite a reduced variation,
the reconstructed RSS vector shows a similar pattern to the
desired RSS signal. In other words, after performing jamming
mitigation via JMAE, the most significant features of the
desired RSS vector are successfully recovered. The most
striking point is that the highest RSS value of both vectors
corresponds to an identical beam, i.e., beam 16. Thus, JMAE
effectively reduces the impact of jamming attacks, allowing
a better decision about the beam used for the downlink data
transmission.

By incorporating both JDAE and JMAE, we achieve a
comprehensive countermeasure against jamming threats. In
particular, Algorithm 1 is utilized for jamming attack detection
first. If an attack is detected, Algorithm 2, in turn, will be
responsible for mitigating the jamming effect and retrieving
the desired RSS vector. Based on this, AGV can then perform
the beam determination. Subsequently, utilizing the best beam
obtained from the beam determination step, BS and AGV can
establish a downlink data transmission. The defensive strategy,
as summarized in Algorithm 3, can now be included as an
additional step in the beam training protocol, as illustrated in
Fig. 4(b).

Remark 2. In 5G NR, the periodicity of SS burst transmission
is configurable, which can be up to 160 ms and set by default
to 20 ms [3]. Therefore, the proposed defensive strategy should
be sufficiently fast to compute the jamming detection and
jamming mitigation within one periodicity of SS burst trans-
mission. Thanks to the AE architecture, both JDAE and JMAE
are remarkably fast regarding online inference (just several ms
per inference). Thus, the defensive strategy potentially meets
the aforementioned computational requirement of 5G NR. This
will be investigated in Section V.
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Fig. 4. The illustration of the beam training protocol for: (a) 5G mmWave
communications; and (b) 5G mmWave communications with the proposed
defensive strategy.

Remark 3. Since the proposed defensive strategy relies mainly
on the RSS information, it requires minimal modification from
the existing beam training protocol in 5G NR [3]. In particular,
the current protocol only needs an additional block without
modifying the other steps, as illustrated in Fig. 4.

V. NUMERICAL RESULTS

A. Simulation Setup

1) Large-scale Fading Model and Rician Factor: The large-
scale fading coefficient βi contains the path-loss and shadow
fading, according to

βi = PLi · 10
σshzi

10 , (25)

where PLi represents the path-loss while 10
σshzi

10 stands for
the shadow fading with the standard deviation σsh, and zi ∼
N (0, 1).

Regarding the path-loss component, we employ an industrial
indoor model proposed in 3GPP [30] to simulate the path-loss
in the indoor factory environment. In particular, the path-loss
(measured in dB) is calculated as follows

PLi=

{
31.84 + 21.5 log(Di) + 19.0 log(fc), if LOS;
33.0 + 25.5 log(Di) + 20.0 log(fc), if NLOS,

(26)

where Di denotes the length of the considered link (measured
in meters) while fc is the center frequency (measured in GHz).
In addition, the shadowing standard deviation is equal to 4.0
dB and 5.7 dB in the case of LOS and NLOS channels,
respectively, according to [30].

It is worth noting that the Rician K-factor and large-
scale fading coefficients vary depending on the location of
transceivers. To reflect the realistic environment in the in-
dustrial factory where a direct communication link might be
blocked, we use the following formulation as in [31]:

Ki =
PLOS(Di)

1− PLOS(Di)
, (27)

TABLE III
SYSTEM PARAMETERS USED FOR THE SIMULATIONS

Parameters Value

Operating frequency (fc) 28.0 GHz
Bandwidth (B) 10.0 MHz
Transmit power of BS (PB) +20 dBm
Transmit power of Attacker (PA) +30 dBm
Number of NLOS paths (Li) 10

The typical clutter size (dclutter) [30] 10

The clutter density (rdens) 0.4

Velocity of AGV (v) 1.0 m/s
Transmit symbol interval (Ts) 1/3× 10−6 seconds

where PLOS is defined as in [30]:

PLOS(Di) = exp

(
− Di

ksubsce

)
, (28)

where Di is the link distance measured in meters, and
ksubsce = −dclutter/ln(1− rdens) with dclutter being the
typical clutter size and rdens standing for the clutter density.
In addition, the noise power is given by

N0 = bandwidth × kB × T0 × noise figure, (29)

where kB = 1.381×10−23 (Joule per Kelvin) is the Boltzmann
constant and T0 = 290 (Kelvin) is the noise temperature.
Other parameters can be found in Table III, unless otherwise
specified.

2) System Parameters: For all simulations, we consider a
deployment area which is a square of 50× 50 m2, where BS
locates at the center of (0, 0). In addition, the location of
Attacker is uniformly distributed at random within the area
due to its unknown identity. BS and Attacker utilize an IEEE
802.15.3c and a DFT codebook for the transmission with 3-
bit resolution, respectively. Meanwhile, AGV moves along a
horizontal line connecting (−20, 10) and (+20, 10) with a
velocity of 1.0 m/s.

3) Machine Learning Parameters: In this paper, all AEs
were trained using a computer with system specifications
including a 2.9 GHz dual-core Intel Core i5 and 8 Gb of
RAM. Regarding JDAE, it was trained using training datasets
with Ntrain = 103 and tested on testing datasets with
NHs,test + NHa,test = 2 × Ntest = 2 × 104. Meanwhile,
JMAE was trained using synthetic datasets with N train

JM = 104,
which is constructed from desired and jamming datasets:
Ndesired = 104, Njam = 103, unless otherwise specified.

For both AEs, during training, the batch size is 40 while
the learning rate is set to 0.005. The early stopping technique
was also utilized to avoid overfitting.

B. Numerical Results for Jamming Detection

1) The impact of codebook size: Fig. 5(a) shows the
accuracy achieved with various values of α while Fig. 5(b)
illustrates the ROC curve achieved under JDAE in three cases:
M = 8, 16 and 32. As we can see, when α is very low, the
accuracy is also low since JDAE will be more sensitive to
jamming attacks. In this case, the majority of events might
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Fig. 5. The performance achieved under JDAE with various values of M =
8, 12, 16 in terms of (a) accuracy, and (b) the ROC curve. In this simulation,
NA = NB = 8 and W = 30.

be classified as Ha events. By contrast, when α is very high,
the detection algorithm ignores the majority of the jamming
attacks. For example, considering M = 8, setting α to 0.0 and
19.5 obtain an accuracy of just 0.72 and 0.80, respectively. As
a result, an appropriate setting of α is necessary to achieve a
satisfactory detection performance. In addition, we also can
see that a higher value of M leads to improved accuracy. For
instance, considering α = 2.5, the accuracy obtained in the
case when M = 8, 16, 32 is approximately 0.82, 0.86, 0.89, re-
spectively. This is because a higher resolution of the codebook
allows JDAE to learn the underlying pattern more efficiently.
The insight is also confirmed by Fig. 5 indicating that the
AUC score is improved when M increases. Moreover, Fig.
5(b) also demonstrates the trade-off between the achieved FPR

and TPR. In the context of classification, it is ideal to obtain
a high value of TPR and a low value of FPR simultaneously.
Nevertheless, increasing the detection threshold will improve
TPR while degrading FPR. We also observe that the trade-off
becomes more disadvantageous when M decreases. However,
when M = 16, we can still guarantee TPR = 0.8 if we accept
FPR = 0.2.

2) The impact of window length: Fig. 6 demonstrates the
impact of window length on the accuracy performance as
well as the ROC curve acquired under JDAE for 3 cases
W = 10, 20 and 30. This simulation considers 2 scenarios:
AGV moves and AGV’s location is deterministic. Regarding
the case when AGV moves, the observation is that increasing
the window length will substantially improve both the accu-
racy and the AUC score of the detection algorithm. To be
specific, the obtained AUC score is equal to 0.749, 0.849 and
0.906 in the case when W = 10, 20 and 30, respectively. The
explanation is that increasing the window length will reduce
the effect of small-scale fading variation. However, AGV
might need additional memory to store the RSS vectors. Again,
Fig. 6(b) also illustrates the trade-off between TPR and FPR.
When W = 30, a satisfactory performance is still obtained
since TPR = 0.83 if we accept FPR = 0.2. The notable point
is that the both ACC and AUC score show an improvement
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Fig. 6. The performance achieved under JDAE with various values of W =
10, 20, 30 in terms of (a) accuracy, and (b) the ROC curve. In this simulation,
NA = NB = 8 and M = 16. This simulation considers 2 cases: moving
AGV and deterministic AGV.

when the location of AGV is deterministic. When W = 10
and α = 5, JDAE achieves ACC = 0.89, which is even greater
compared to the scenario where AGV moves with W = 30
and α = 5. This is because when AGV does not move, the
channel distribution does not change significantly, leading to
easier jamming detection.

3) The impact of the number of antennas: Fig. 7(a) shows
the accuracy of the detection algorithm whereas Fig. 7(b)
demonstrates the trade-off between TPR and FPR under a
different number of antennas at Attacker, i.e., NA = 8, 16 and
32. Herein, the number of antennas at BS remains unchanged
(NB = 8). The striking point is that the detection performance
is enhanced if Attacker utilizes more antennas. To explain,
utilizing more antennas allows Attacker to focus more energy
toward AGV, leading to more destructive, but more easily
noticeable attacks. For example, in the case when NA = 32,
the proposed algorithm achieved a very high AUC, i.e., 0.953.
Also, by setting α = 2.5, nearly 90% of the testing jamming
attacks were classified correctly.

4) The impact of the distance between Attacker and BS:
Next, we investigate the impact of the distance between
Attacker and BS on the achieved accuracy of JDAE, as de-
picted in Fig. 8. This simulation considers 4 different average
distances, which are 1.25, 2.5, 5.0, and 10.0 m. To do this,
Attacker’s location was randomly generated within a circular
area centered on BS and with radii of 2.5, 5.5, 10.0, and
20.0 m, respectively. As can be seen, the accuracy of JDAE
increases when Attacker is closer to BS. For example, when
the average distance between the Attacker and BS is 1.25 m
and α = 5.0, an accuracy of nearly 100% is achieved. By
contrast, when the average distance between Attacker and BS
is 10.0 m, the detection accuracy drops below 90%. This is
because when Attacker and BS are in close proximity, there is
a possibility of having an identical strongest beam, resulting
in a significant change in the RSS vector, thus enabling easy
detection of the attack. Nevertheless, when Attacker is further
away from BS, AGV may not perceive significant changes in
the RSS vector if its peak remains unchanged, causing false
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detections. It is important to note that despite the very high
accuracy, it is anticipated that the mitigation performance will
be low when Attacker is close to BS.

C. Numerical Results for Jamming Mitigation

In this simulation, we fix the location of Attacker at (20, 15)
as JMAE is only employed once an attack is captured. There
were 10000 realizations and shadowing profiles generated
during the evaluation. As a benchmark, we consider the
following schemes:

• No jamming attack: There are no jamming signals.
• Perfect jamming mitigation: The RSS vector is recon-

structed perfectly.
• JMAE: The RSS vector is reconstructed by using JMAE.
• Without jamming mitigation: No jamming mitigation is

applied. Therefore, AGV performs the beam determina-
tion based on the corrupted RSS vector.

1) The impact of transmit power utilized by Attacker:
Fig. 9 shows the average SINR received at AGV in the
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Fig. 9. The average SINR received at AGV with various values of PA. In
this simulation, NA = NB = 16, M = 32, and PB = 20 dBm.
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Fig. 10. The average SINR received at AGV with various values of M . In
this simulation, NA = NB = 8, PA = 35 dBm, and PB = 20 dBm.

case when Attacker utilizes various transmit powers. As can
be seen, the proposed attack strategy causes an enormous
deterioration in the average received SINR, which tends to
increase proportionally with PA. For example, when PA = 25
dBm, the average received SINR is equal to less than 15
dB, which is nearly 35 dB lower than that in the case when
there is no jamming attack. If Attacker increases the transmit
power to PA = 40 dBm, this gap is even more significant,
i.e., more than 60 dB. This result indicates that by confusing
AGV during the beam training procedure, the proposed attack
strategy can break the downlink data transmission. In addition,
Fig. 9 also demonstrates that employing JMAE for jamming
mitigation can improve the average received SINR remarkably.
For instance, when PA = 40 dBm, utilizing JMAE can achieve
an average received SINR of approximately 2 dB, whereas
this figure is just −15 dB if the jamming mitigation is not
applied. Last but not least, the performance achieved under
JMAE is just around 2 dB lower than that in the case of
perfect jamming mitigation, which proves the effectiveness of
the proposed JMAE algorithm.
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Attacker and BS. In this simulation, NA = NB = 8, M = 32, PB = 20
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2) The impact of codebook size: Fig. 10 demonstrates the
impact of codebook resolution on the SINR performance.
It can be seen that Attacker can launch more destructive
attacks on the legitimate system by using a higher-resolution
codebook. The explanation is that when M increases, Attacker
can beam the jamming signals toward AGV more accurately.
Moreover, for all the considered values of M , despite an
insignificant reduction compared to the case of perfect jam-
ming mitigation, JMAE still shows a noticeably improved
performance in comparison with the case of no jamming
mitigation, i.e., up to 15 dB when M = 16, 32.

3) The impact of the number of antennas: Fig. 11 repre-
sents the average SINR performance achieved at AGV in the
case when Attacker utilizes a different number of antennas.
As employing more antennas allows Attacker to focus the
jamming signals in a narrower beam with a higher gain, the
average received SINR decreases when NA increases. Due
to the narrower jamming beam, if AGV still can select the
advantageous beam for BS, the destructive impact of jamming
signals will be less severe. As a result, when NA increases, the
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Fig. 13. The average SINR received at AGV with various values of PA. In
this simulation, NA = NB = 16, M = 32, PB = 20 dBm.

TABLE IV
BENCHMARK OF AVERAGE LATENCY (IN MILLISECONDS) OF

JDAE AND JMAE OVER 10000 REALIZATIONS.

M 8 16 32 64

Algorithm 1 1.90 2.10 2.89 3.7

Algorithm 2 1.34 1.66 2.46 3.0

average received SINR enhances under the perfect jamming
mitigation. Interestingly, the performance achieved by JMAE
still improves when NA increases, which is equal to 7 dB when
NA = 16. This indicates that the more antennas Attacker can
utilize to launch more destructive attacks, the more effectively
JMAE can perform.

4) The impact of the distance between Attacker and BS:
Fig. 12 illustrates the relationship between the average SINR
received at AGV and the 4 average distances between Attacker
and BS. As previously mentioned, JDAE achieves a very high
detection accuracy when Attacker is close to BS. However,
this simulation points out that the average received SINR is
still very low in this scenario. This is because even though
JMAE can effectively mitigate the jamming signal and AGV
can accurately select the optimal beam, this beam is still
advantageous for Attacker to launch attacks. In particular, the
average received SINR is just −7.0 dB when the average
distance is 1.25m, but it improves to 7 dB when Attacker
is located 10.0 m away from BS.

5) The impact of N train
JM : Fig. 13 illustrates the achieved

average SINR when JMAE is trained on a different number
of synthetic data samples. Considering PA = 30 dBm, using
N train

JM = 1000 achieves an average received SINR of approx-
imately 8 dB, which is still noticeably lower than that for the
case when N train

JM = 5000. However, the performance does not
improve further when more synthetic data samples are used for
training, i.e., N train

JM = 5000, 10000. This points out that using
an insufficient number of synthetic data samples might lead to
unsatisfactory performance, but it is still not necessary to use
a very large value of N train

JM .



D. Computational Latency Analysis

Table IV shows the average latency (in milliseconds) that
Algorithm 1 and Algorithm 2 require to compute one inference
for various codebook sizes. As we can see, increasing M leads
to a higher latency for the online inference since utilizing a
higher-resolution codebook means that the AE architectures
employ more layers and neurons. For example, when M = 8,
Algorithm 2 only needs an average computational time of
1.34 ms to execute one jamming mitigation while Algorithm 1
spends 1.9 ms for detecting one jamming signal. These figures
nearly double when M = 64, which are 3.0 and 3.7 ms on
average for Algorithm 2 and Algorithm 1, respectively. In
the case when a jamming attack is identified, the latency for
Algorithm 3 is 3.2 ms for M = 8, and more than 6 ms for
M = 64. Since the periodicity of SS burst transmission can
be up to 160 ms in 5G NR, Algorithm 3 shows much promise
for meeting the latency requirement.

VI. CONCLUSIONS

We investigated the security aspect of the beam training
procedure in 5G mmWave communications. We considered a
scenario normally encountered in industrial factories where an
AGV and a BS perform beam training to maintain a wireless
connection using a mmWave frequency. We introduced a
simple attack strategy targeting the beam training procedure
to manipulate the RSS vector at AGV, resulting in a very
large deterioration, up to 60 dB, for the average received
SINR. To defend against this attack, we propose an anti-
jamming countermeasure that comprises two AE-based ML
models, namely JDAE and JMAE, for jamming detection
and jamming mitigation, respectively. The numerical results
showed that JDAE can identify the jamming attacks with an
accuracy of more than 80%. In addition, once JDAE captures
an attack, JMAE, in turn, can be employed to alleviate the
jamming effects, leading to a significant improvement of the
average SINR, i.e., more than 15 dB compared to the case
of no jamming mitigation. A potential future extension is
to investigate the case when multiple AGVs are present and
BS utilizes a hybrid beamforming. It is anticipated that the
autoencoder architectures will be more complicated, resulting
in an improved detection accuracy with a cost of increasing
latency during the online executation.
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