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Abstract—Terahertz (THz) frequency technology holds great
promise for enabling high data rates and low latency, essential for
manufacturing applications within Industry 4.0. To achieve these,
beam training is necessary to enable MIMO communications
without the need for explicit channel state information (CSI).
In this context, the Multi-Armed Bandit (MAB) algorithms are
able to facilitate online learning and decision-making in beam
training, eliminating the necessity for extensive offline training
and data collection. In this paper, we introduce three algorithms
to investigate the applications of MAB in beam training at
Terahertz frequency: UCB, Loc-LinUCB, and Probing-LinUCB.
While UCB builds upon the well-established Upper Confidence
Bound algorithm, Loc-LinUCB and Probing-LinUCB utilize the
location of the user equipment (UE) and probing information
to enhance decision-making, respectively. The beam training
protocols for each algorithm are also detailed. We evaluate the
performance of these algorithms using data generated by the
DeepMIMO framework, which simulates abrupt changes and
various challenging characteristics of wireless channels encoun-
tered in realistic scenarios as UEs move. The results illustrate that
Loc-LinUCB and Probing-LinUCB outperform UCB, showing
the potential of leveraging contextual MAB for beam training in
Terahertz communications.

Index Terms—Beam training, beam tracking, bandit learning,
contextual bandit, THz communications.

I. INTRODUCTION

The Industry 4.0 has opened a new era of smart manufactur-
ing with the integration of advanced technologies to enhance
productivity and efficiency. In this context, the demand for
high-speed data communication is rapidly increasing, driven
by the exponential growth in mobile and wireless devices,
as well as the emergence of new applications and services
that require stringent data rates and low latency. Within this
paradigm, Terahertz (THz) communication, which will be
an important part of the sixth generation (6G) networks,
shows the potential to revolutionize smart manufacturing in
the Industry 4.0 [1]–[3]. The THz frequency band, spanning
from 0.1 to 10 THz, offers a vast amount of available spectrum
and provides the potential for addressing the connectivity
needs of Industry 4.0. It enables smart manufacturing systems
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to support data-intensive applications, including ultra-high-
definition video streaming, augmented reality-enhanced main-
tenance and training, and real-time quality control. Moreover,
THz communication can alleviate the shortage of frequency
spectrum in the sub-6 GHz and mmWave bands that have
traditionally underpinned wireless communication in manu-
facturing environments.

Despite these potential advantages, THz communication
also poses significant technical challenges that must be over-
come. The high attenuation, narrow beamwidth, and sus-
ceptibility to atmospheric absorption of THz signals make
it difficult to transmit them over long distances or through
obstacles [1], [2]. This requires the development of new
antenna technologies, signal processing techniques, and com-
munication protocols that can overcome these challenges. One
method is to use an antenna array, which can focus the
signals toward the receiver in a very narrow beam to overcome
the high attenuation of THz signals [2]. Nevertheless, to
utilize an antenna array effectively, it is essential to design an
efficient beam training algorithm that can accurately identify
the optimal beamforming direction with a low complexity.

In the context of THz communication, it is essential to
recognize that traditional estimation techniques may not be
practical due to the high computational complexity required
for large-scale array operations. Furthermore, unlike the sub-
6 GHz frequencies, transmitting pilot signals over omni-
directional directions results in significant path loss at THz
frequencies, making it difficult for the receiver to detect them
efficiently [2]. The most straightforward approach to this
problem is to use exhaustive search beam training, which
involves transmitting reference signals (RSs) and testing all
possible transmit and receive beamforming vectors available
in the codebooks of the transmitter and receiver to identify
the optimal beam pair. However, this method can cause sig-
nificant latency if the number of antennas is large. Recent
research has explored alternative approaches to beam training
using deep learning and online learning techniques. Regarding
the first approach, deep neural networks (DNN) have been
used extensively to learn the pattern between the wireless
environment and optimal configurations [4]. For example, the
research proposed in [5], [6] focused on utilizing DNNs to



explore the relationship between the mmWave environment
and optimal beam-direction . However, this approach requires
a significant amount of training data, which can be expensive,
time-consuming, and raises privacy and security concerns. As
an alternative, Multi-Armed Bandit (MAB) learning has been
adopted as an online decision-making technique for beam
training since it eliminates the need for data collection and
training, making it a promising approach.

Several algorithms based on MAB were proposed for beam
alignment, including the unimodal beam alignment (UBA) al-
gorithm, which reduces the search space for optimal beam di-
rections by leveraging the correlation between adjacent beams
and the unimodal distribution of received signal power [7]. The
exponential weights algorithm for exploration and exploitation
(EXP3) was used in beam-alignment algorithms to cope with
unpredictable environments [8]. A beam-alignment method for
vehicular communications in the millimeter-wave frequency
range was proposed, which leverages the directional arrival
information of the vehicle as contextual data [9]. Despite
providing useful insights, the approaches introduced in [7],
[9] operarate based on a central node while the performance
evaluation in [8] was not realistic because it does not consider
the impact of surrounding objects which might lead to abrupt
changes in the wireless channel.

The purpose of this study is to explore the potential use
of MAB learning in beam training for THz communications
in a realistic environment showing the impact of surrounding
objects and abrupt changes. In particular, we propose three
algorithms: UCB, Loc-LinUCB, and Probing-LinUCB. UCB
is based on the well-established Upper Confidence Bound
algorithm, while Loc-LinUCB and Probing-LinUCB utilize the
contextual linear UCB technique which uses the side informa-
tion to improve the online decision making process. To be
specific, Loc-LinUCB exploits the location information of the
user equipment (UE), whereas Probing-LinUCB incorporates
probing data as contextual information to enhance decision-
making. These algorithms can be implemented at either BS
or UE, eliminating the need for a central node. We also
provide detailed protocols for each algorithm and discuss their
effectiveness. Additionally, the spectral efficiency achieved by
these algorithms will be benchmarked using realistic data gen-
erated by the DeepMIMO framework [10]. The results indicate
that incorporating side information using contextual MAB can
significantly enhance the spectral efficiency performance.

Notation: Through this paper, we use lowercase and up-
percase boldface letters to represent vectors and matrices, re-
spectively. The notations (.)T and (.)H represent the transpose
and conjugate-transpose operator, respectively. In addition,
CN (0, σ2) stands for circularly symmetric complex Gaussian
distribution with zero mean and variance σ2 while E {.} is the
expectation operator.

II. SYSTEM MODEL

A. THz Communications Using Codebooks

In this paper, we consider the beam training between a base
station (BS) and a user equipment (UE) that communicate
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Fig. 1. The beam training protocols when the agent is implemented at: (a)
BS; and (b) UE.

using antenna arrays. Let the number of antennas at BS and UE
are NB and NU, respectively and H denote the complex chan-
nel matrix between BS and UE, H ∈ CNU×NB . In addition, we
denote the codebooks for BS as F = {f1, f2, · · · , fMB} and for
UE as Q = {q1,q2, · · · ,qMU}, where MB and MU are the
codebook size equipped at BS and UE, respectively. Note that
fi ∈ CNB×1 and qi ∈ CNU×1. Considering a scenario where
BS utilizes the beamforming vector fi while UE utilizes the
beamforming vector qj , the instantaneous received signal at
UE during the timeslot t, can be written as

yij(t) = qH
j H(t)fis(t) + qH

j n(t), (1)

where s(t) and n(t) are the transmitted signal and noise vector
at UE in the timeslot t. Hence, the instantaneous signal-to-
noise (SNR) ratio at UE can be expressed as

SNR(t) =

∣∣qH
j H(t)fi

∣∣2∣∣qH
j n(t)

∣∣2 . (2)

It can be seen that the combination of each fi,qj pair results
in varying SNR values. Thus, the objective is to identify the
optimal beamforming pair that can achieve maximum long-
term spectral efficiency (SE). The instantaneous SE of the link
between BS and UE in a time slot t can be represented as:

SE(t) = log2 [1 + SNR(t)] . (3)

B. General MAB Platform For Beam Alignment And Tracking

In the 5G standard, when a new UE is added to the
network for the first time, it waits for BS to initiate the
Initial Access (IA) process [11]. During the IA procedure, BS
transmits synchronization signals (SS) and UE measures the
beam quality and report them back via ACK/NACK messages.
The IA is periodically performed by BS to detect new UEs and
update existing UE’s best beams. To maintain communication,
BS transmits Channel State Information Reference Signals
(CSI-RS) at regular intervals. These signals are used for Refer-
ence Signal Received Power (RSRP) measurements for beam
management during mobility. However, transmitting the CSI-
RS towards all spatial directions may cause a long delay. To



TABLE I
ACTIONS AND MEANING

Actions Meaning
a0 BS uses beam 0 and UE uses beam 0
a1 BS uses beam 0 and UE uses beam 1
a2 BS uses beam 0 and UE uses beam 2
· · · · · ·
anactions−1 BS uses beam MB and UE uses beam MU

support ultra-reliable low-latency communication (URLLC), it
is necessary to significantly decrease the control overhead of
beam training because THz communications will use a larger
antenna array compared to the mmWave communications.

The problem of beam training can be formulated as a typical
MAB learning problem, since the selection of any transmit
and receive beam does not impact the environment’s state. In
this context, an agent must balance the acquisition of new
knowledge, or exploration, with the optimization of decisions
based on previously acquired knowledge, or exploitation. The
objective is to optimize the trade-off between exploration and
exploitation so that its total reward over a given period of time
is maximized. The MAB has enjoyed widespread applications
in various practical domains, including healthcare, advertising,
and others.

Considering a set of available actions1 A, where the agent
and the environment interact sequentially over T rounds. At
each round t = 1, 2, · · · , T , the agent selects an action
At ∈ A to perform, and the environment returns a corre-
sponding reward Xt to the agent. The interaction between the
agent and environment provide a measure on the sequence
of outcomes A1, X1, A2, X2, ..., An, Xn. The objective of the
agent is to maximize the total reward ST =

∑T
t=1 Xt, over

the entire duration of the interaction. This goal is achieved by
strategically selecting actions that lead to the highest possible
cumulative reward.

Regarding beam training, the set of actions can be denoted
as A = {ai} with 0 ≤ i < MBMU. A mapping between each
action and a pair of beams is shown in Table. I. Hence, there
is a total of nactions ≜ MBMU actions. At the time slot t, the
reward can be defined as Xt = SE(t). The agent is responsible
for selecting the action in each time slot as UE moves, enabling
online learning and adaptation. Unlike traditional supervised
learning methods that require a training phase specific to each
environment, MAB learning eliminates the need for offline
training, resulting in reduced time and effort.

It is noteworthy that the agent can be implemented at
either BS or UE, albeit with some required modifications to
the relevant protocols. Fig. 1 demonstrates the beam training
protocols for both scenarios, when the agent is at BS and
when it is at UE. In the case when the agent is implemented
at BS, following by each primary data transmission, UE
needs to report the instantaneous SE value to BS via the
ACK message. Subsequently, based on that value, the agent
selects the action to play in the current time slot, following

1In the context of MAB learning, the terms actions and arms can be used
interchangeably. This paper utilizes both terms to refer to the same concept.

Algorithm 1: UCB Algorithm [12]
Input: The uncertainty probability δ1.
Output: At.

1 Initialize µ̂t,a = 0 and nt,a = 0.
2 for t = 1, 2, · · · do
3 foreach a ∈ A do
4 /*Calculate UCB for each action*/ UCBt,a ={

+∞, if nt,a = 0

µ̂t,a +
√

2 log(1/δ1)
nt,a

, otherwise
5 end
6 /* Select the action whose the highest UCB value

*/ At = argmax
a∈A

UCBt,a

7 /* Update the values after receiving the reward Xt

*/ µAt
← µAtnt,At+Xt

nt,At+1 ; nt,At
← nt,At

+ 1

8 end

by BS sending the receive beam ID to UE. After this, the
primary data communication will be initiated. In comparison,
when the agent is located at UE, after each primary data
transmission, the agent can make a decision of which action
to play owing to the availability of the instantaneous SE value
at UE. Subsequently, UE simply transmits these information
to BS via ACK message, which initiates the next primary data
transmission.

With this general platform for utilizing MAB learning for
beam training, the agent can employ various MAB learning
algorithms, which will be further elaborated in the subsequent
sections.

III. BEAM TRAINING AND BEAM TRACKING VIA BANDIT
LEARNINGS

A. Upper Confidence Bound Algorithm

The Upper Confidence Bound (UCB) algorithm is a widely
employed strategy in the field of MAB problems [12]. It
operates based on the principle of optimism in the face of
uncertainty. This means that the agent should adopt an opti-
mistic approach and act as if the environment is as favorable as
plausibly possible. In the context of MAB, the UCB algorithm
utilizes this principle to balance exploration and exploitation
by selecting the action with the highest upper confidence
bound, which incorporates both the empirical reward and an
uncertainty term, defined mathematically as

UCBt,a =

{
+∞, if nt,a = 0

µ̂t,a +
√

2 log(1/δ1)
nt,a

, otherwise.
(4)

Herein, UCBt,a stands for the UCB value for the action a ∈ A,
which is computed based on the expected reward of the action,
denoted as µ̂t,a, and the number of times the action has been



Algorithm 2: Linear Contextual UCB Algorithm [13]
Input: Probability of uncertainty δ2. Set

α = 1 +
√
ln(2/δ2)/2

Output: At.
1 for t = 1, 2, · · · , nactions do
2 Observe the contextual vector xt ∈ Rd; foreach

a ∈ A do
3 if a is new then
4 Aa ← Id;
5 ba ← 0d×1;
6 end
7 /* Estimate the coefficient vector for each

action a */ θ̂θθa ← A−1
a ba;

8 /* Calculate the UCB for each action */

UCBt,a ← θ̂θθ
T

a xt,a + α
√
xt,aA

−1
a xt,a;

9 end
10 /* Select the action whose the highest UCB value

*/ At = argmax
a∈A

UCBt,a

11 /* Update the values after receiving the reward Xt

*/ AAt
← AAt

+ xt,At
xT
t,At

;
bAt ← bAt +Xtxt,At ;

12 end

selected, represented by nt,a, all in a specific time slot t. This
equation was proposed based on the following inequality [12]

P

(
µt,a > µ̂t,a +

√
2 log(1/δ1)

nt,a

)
≤ δ1, (5)

for all probability of uncertainty δ1 ∈ [0, 1]. Generalling
speaking, UCB is the greatest value of the reward that the
agent expects. As we can see, when the value of nt,a is low,
the square root term in the UCB formula becomes large, which
results in a higher probability of exploration by the agent. In
addition, if there is an action a which has not been played yet,
its UCB will be set as +∞, forcing the agent to play this arm
for exploration.

The transmission protocol for UCB algorithm is demon-
strated in Fig. 1.

B. Contextual Linear UCB Algorithm

Contextual bandits are a class of machine learning algo-
rithms that take into account contextual information to select
the best action depending on the contextual information [12].
The stochastic contextual bandits still operates based on the
principle of optimism in the face of uncertainty, however,
the agent exploits by modelling the relationship between the
expected reward and the contextual vector, which is called
reward model. In this paper, we adopt the linear function for
the reward model, where the expected reward of each action

BS UE

Data
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Data

…

The 
agent 
selects 
the arm

BS UE

Data

Transmit beam ID via ACK

Data

…

UE measures the
received SE, then
the agent selects
the arm using its 
location information

(a) (b)

Report locations via ACK

Fig. 2. The beam training protocols when the Loc-LinUCB algorithm is
implemented at: (a) BS; and (b) UE.

(denoted as E[Xt,a]) is modelled as a linear function of the
contextual vector xt,a

2, which can be demonstrated as

E[Xt,a|xt,a] = xT
t,a θθθ∗a, (6)

where θθθ∗a is an unknown coefficient vector θθθ∗a associated with
the action a. These vectors are estimated when the agent
receives rewards from the environment. In particular, there will
be data associated with each action including the contextual
vector and the corresponding reward. Based on this data,
the coefficient vectors can be estimated online using Ridge
regression [13]. The linear contextual bandit algorithm is
described in Algorithm 2 [13]. Based on this, we will propose
2 algorithms, so-called Loc-LinUCB and Probing-LinUCB,
which utilize different contextual vectors for beam training.

1) Linear Contextual Bandits With Location Data: Recent
research has indicated a correlation between the positions
of UEs and the Received Signal Strength Indicator (RSSI)
[14]. These studies suggest that the geographical locations
of UEs can serve as a valuable contextual vector, provided
that the hardware of the UEs is capable of collecting this
information. To leverage this fact, we introduce Loc-LinUCB,
an algorithm that incorporates the contextual vector as a form
of side information to help decision making. Specifically, the
contextual vector is represented as xt,loc = [xt, yt]

T ∈ R2,
where xt and yt refer to the x-coordinate and y-coordinate of
UE, respectively.

The transmission protocol for UCB algorithm is demon-
strated in Fig. 3.

2) Linear Contextual Bandits With Probing Information:
Some studies have shown that consecutive beams at both
BS and UE exhibit a spatial correlation [15]. Therefore, we
propose an approach in which BS only utilizes a selected
subset of beamforming vectors, known as probing beams, from
its codebook for transmitting the RSs, instead of using all the
available vectors. Similarly, UE can also utilize some selected
beamforming vectors from its codebook. This technique has

2Note that in the context of beam training, all actions have a similar
contextual vector in some cases. As such, we denote the contextual vector
in the time slot t as xt.
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Fig. 3. The beam training protocols when the Probing-LinUCB algorithm is
implemented at: (a) BS; and (b) UE.

the potential to significantly reduce the latency associated
with RSs transmission. In this approach, the contextual vector
refers to the sequence of SE values obtained after the RS
transmission. We leverage this contextual vector to introduce
a Probing-LinUCB algorithm that selects the optimal beams
for each time slot.

The transmission protocol for UCB algorithm is demon-
strated in Fig. 3. As we can see, compared to Loc-LinUCB,
Probing-LinUCB requires some more sub-timeslots for send-
ing the RSs, which will lead to a prolong latency.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

In this paper, we benchmark the performance of the three
algorithms, UCB, Loc-LinUCB and Probing-LinUCB using
data generated by the DeepMIMO framework [10]. The
framework employs precise ray-tracing data from Remcom
Wireless InSite [16] to create a wireless channel that takes
into account the influence of the environment geometry, as
well as the transmitter and receiver positions. Specifically, we
utilize the ray-tracing scenario O1 at 140 GHz as a benchmark,
which simulates an outdoor setting with two streets and one
intersection, as depicted in Figure 4. By conducting this
benchmark study, we aim to shed light on the strengths and
weaknesses of the three algorithms under consideration, and
provide insights into their suitability for practical applications
in THz communications.

In practice, DFT codebooks are widely used as they can
match approximately the optimal beamforming. In addition,
they also can achieve higher antenna gains at the beam direc-
tions than the codebooks used in IEEE 802.15.3c. Assuming
N is the number of antennas and M is the number of beam
patterns, a codebook W is defined as [17]

W(n,m) =
1√
N

e−m2π nm
N , (7)

with 0 ≤ n < N − 1, 0 ≤ m < M − 1. In this paper, both
BS and UE employ DFT codebook with a resolution of 3 bits
and a codebook size of MB = 8 and MA = 4, respectively.

TABLE II
SYSTEM PARAMETERS

Parameters Value
Operating frequency (fc) 140.0 GHz
Bandwidth (B) 0.5 GHz
BS antenna array 1× 4× 4 UPA
UE antenna array 1× 2× 2 UPA
Codebook size at BS (MB) 8
Codebook size at UE (MU) 4
Antenna spacing (d) Half of a wave-length
Transmit power of BS (P ) 10.0 Watts
Number of paths 5
Noise figure 7.2 dB

Regarding BS, we only use the BS 5 from the dataset for
the simulations. To be specific, BS has a height of 6 meters
and is equipped with a 4 × 4 uniform plannar array (UPA)
antenna. The transmit power of BS is 10 Watts.

Regarding UE, it has a height of 2 meter above the ground
and is equipped with a 2 × 2 uniform plannar array (UPA)
antenna. Unlike existing research, we consider a continuous
movement of UE to evaluate the beam training performance.
The trajectory of UE is illustrated in Fig. 4, starting from
point A and moving sequentially to points B, C, D, E, F, G,
H, and finally returning to A. As UE moves, it is expected
to experience line-of-sight (LOS) channels to BS at different
locations, such as during the movement from A to B to C,
while also experiencing non-LOS channels at other locations.
Therefore, the bandit algorithms must adapt to the changes of
the environment and make decisions accordingly.

Other system parameters are listed in Table II. In this
section, we will provide the benchmark of the SE achieved
under the following algorithms:

• UCB algorithm with δ1 = 0.05.
• Loc-LinUCB algorithm with δ2 = 0.05.
• Probing-LinUCB algorithm with δ2 = 0.05. The con-

textual vector is the sequence of instantaneous achieved
SE when the actions a0, a8, a16, a24 were utilized for
transmitting reference signals. This means that only 4
sub-timeslots are spent on the RS transmission, instead
of 32 as used by an exhaustive search.

• Exhaustive search, or optimal algorithm, in which the
optimal pair of beamforming vectors are determined by
using exhaustive search over the entire beam space.

B. Performance Evaluation

Fig. 5 illustrates the average SE achieved by different
algorithms, namely UCB, Loc-LinUCB, Probing-LinUCB, and
exhaustive search, when UE follows its designated path. It is
worth noting that the SE values are averaged over every 100
timeslots. The results indicate that the performance of these
algorithms fluctuates significantly depending on the location of
UE. For instance, as UE moves towards BS, the SE increases
steadily from timeslot 0 to 1500. However, abrupt changes in
performance occur when UE changes direction. Interestingly,
even when the exhaustive search algorithm is used, there are
still significant fluctuations in performance observed during
timeslots 4000 to 5000 (around 10 bits/s/Hz) and 5200 to 6200
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Fig. 5. The figure shows the average SE achieved by UCB, Loc-LinUCB,
Probing-LinUCB and using exhaustive search when UE moves.

(around 4.5 bits/s/Hz). In the case when UE changes direction,
the statistical distribution of the reward function undergoes
an abrupt shift, leading to an suboptimal performance. As a
result, all the algorithms must spend multiple timeslots for
exploring the best action, as observed in the UCB algorithm’s
behavior between timeslots 1500 and 2000. During the ex-
ploration, a suboptimal performance can be observed. Despite
achieving nearly optimal performance between timeslots 2000
and 4000 (e.g., about 8 bits/s/Hz), and again from 6500 to
8000 (e.g., approximately 10 bits/s/Hz), the UCB algorithm’s
performance is notably low between timeslots 4000 and 5000
(approximately 6 bits/s/Hz) and 5200 to 6000 (approximately
1 bits/s/Hz). This is because the fast environmental changes
does not allow the agent to perform a sufficient exploration,
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Fig. 6. The figure shows the CDF of the spectral efficiency achieved by UCB,
Loc-LinUCB, Probing-LinUCB and using exhaustive search.

hindering its ability to make appropriate decisions. In other
words, the environment has changed into a new state before the
agent can find out the best action for that state. In comparison,
Probing-LinUCB outperforms UCB and Loc-LinUCB in the
time slots around 1500 and between 4200 to 5200, while
Loc-LinUCB performs better in the time slots between 5400
and 6400. This indicates that the use of a linear function
to represent the relationship between the expected rewards
and the contextual vector can lead to good performance in
some cases, but may fail to generalize in other cases. This is
evident in the performance of Probing-LinUCB in the time
slots between 2000 to 4000, where it shows unpredictable
fluctuation in the suboptimal performance.

Fig. 6 displays the cumulative density function (CDF) of
the SE achieved by UCB, Loc-LinUCB, Probing-LinUCB, and



TABLE III
COMPARISON OF ALGORITHMS

UCB Loc-
LinUCB

Probing-
LinUCB

Complexity Lowest Higher Higher
Extra hardware No Yes No
Spend sub-timeslots for
RSs

No No Yes

SE performance Lowest Runner-up Best

exhaustive search. The results indicate that UCB achieves the
lowest performance among all algorithms. On the other hand,
both Loc-LinUCB and Probing-LinUCB show improved per-
formance by incorporating side information into the decision-
making process. Generally, these two algorithms demonstrate
quite similar performance. However, it is noteworthy that for
a probability of 0.1, the SE threshold for UCB, Probing-
LinUCB, and Loc-LinUCB is approximately 0.7, 1.5, and
2.5 bits/s/Hz, respectively. However, its performance is still
approximately 40% lower than the exhaustive search method
(4.5 bits/s/Hz), primarily because the algorithm needs to
perform exploration again when the environment changes.

Discussions: In practical applications, it is important to
consider the strengths and weaknesses of the three algorithms.
For instance, although the UCB algorithm exhibits the lowest
performance among the three, it has a simple and straight-
forward implementation that is well-suited for hardware with
low capability. In contrast, the Loc-LinUCB algorithm delivers
an improved performance compared to UCB, but requires
additional hardware to acquire location information for UE.
Additionally, neither the UCB nor the Loc-LinUCB algorithms
require extra sub-timeslots for transmitting RSs, which is a
requirement for the Probing-LinUCB algorithm. It is worth
highlighting that the complexity of both Loc-LinUCB and
Probing-LinUCB is heavily dependent on the length of the
contextual vector, despite being built upon LinUCB. This
emphasises the need to carefully consider the dimensionality
of the input data when implementing these algorithms in
practice. A summary of these characteristics can be found in
Table III.

V. CONCLUSIONS AND FUTURE RESEARCH

This paper presents three algorithms, namely UCB, Loc-
LinUCB, and Probing-LinUCB, which adopt MAB learning
in beam training at THz frequency. UCB is designed based
on Upper Confidence Bound algorithm whereas Loc-LinUCB
and Probing-LinUCB rely on contextual bandit learning. The
results show that Loc-LinUCB and Probing-LinUCB out-
perform UCB thanks to utilizing contextual information for
decision-marking process. There are several interesting re-
search directions that can be pursued in the future. Firstly,
given the wireless channel’s tendency to undergo sudden and
unpredictable changes, the data captured by the UE in the
distant past may no longer be relevant in predicting current
patterns. As a result, it is critical to design a contextual
algorithm that can effectively adapt to such dynamic changes

in the environment. Secondly, a strategy for selecting the
optimal patterns to transmit probing beams needs to be inves-
tigated. Lastly, since the Loc-LinUCB and Probing-LinUCB
algorithms each possess unique strengths, a natural question
arises: how can these two algorithms be combined to further
enhance system performance? Finding an effective way to
incorporate the strengths of both algorithms holds significant
promise for improving overall spectral efficiency.
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