4,034 research outputs found
Using ocean-glint scattered sunlight as a diagnostic tool for satellite remote sensing of greenhouse gases
International audienceSpectroscopic measurements of sunlight backscattered by the Earth's surface is a technique widely used for remote sensing of atmospheric constituent concentrations from space. Thereby, remote sensing of greenhouse gases poses particularly challenging accuracy requirements for instrumentation and retrieval algorithms which, in general, suffer from various error sources. Here, we investigate a method that helps disentangle sources of error for observations of sunlight backscattered from the glint spot on the ocean surface. The method exploits the backscattering characteristics of the ocean surface, which is bright for glint geometry but dark for off-glint angles. This property allows for identifying a set of clean scenes where light scattering due to particles in the atmosphere is negligible such that uncertain knowledge of the lightpath can be excluded as a source of error. We apply the method to more than 3 yr of ocean-glint measurements by the Thermal And Near infrared Sensor for carbon Observation (TANSO) Fourier Transform Spectrometer (FTS) onboard the Greenhouse Gases Observing Satellite (GOSAT), which aims at measuring carbon dioxide (CO2) and methane (CH4) concentrations. The proposed method is able to clearly monitor recent improvements in the instrument calibration of the oxygen (O2) A-band channel and suggests some residual uncertainty in our knowledge about the instrument. We further assess the consistency of CO2 retrievals from several absorption bands between 6400 cm-1(1565 nm) and 4800 cm-1(2100 nm) and find that the absorption bands commonly used for monitoring of CO2 dry air mole fractions from GOSAT allow for consistency better than 1.5 ppm. Usage of other bands reveals significant inconsistency among retrieved CO2 concentrations pointing at inconsistency of spectroscopic parameters. © 2013 Author(s)
Toward accurate CO_2 and CH_4 observations from GOSAT
The column-average dry air mole fractions of atmospheric carbon dioxide and methane (X_(CO_2) and X_(CH_4)) are inferred from observations of backscattered sunlight conducted by the Greenhouse gases Observing SATellite (GOSAT). Comparing the first year of GOSAT retrievals over land with colocated ground-based observations of the Total Carbon Column Observing Network (TCCON), we find an average difference (bias) of â0.05% and â0.30% for X_(CO_2) and X_(CH_4) with a station-to-station variability (standard deviation of the bias) of 0.37% and 0.26% among the 6 considered TCCON sites. The root-mean square deviation of the bias-corrected satellite retrievals from colocated TCCON observations amounts to 2.8 ppm for X_(CO_2) and 0.015 ppm for X_(CH_4). Without any data averaging, the GOSAT records reproduce general source/sink patterns such as the seasonal cycle of X_(CO_2) suggesting the use of the satellite retrievals for constraining surface fluxes
The impact of spectral resolution on satellite retrieval accuracy of CO_2 and CH_4
The Fourier-transform spectrometer on board the Japanese GOSAT (Greenhouse gases Observing SATellite) satellite offers an excellent opportunity to study the impact of instrument resolution on retrieval accuracy of CO_2 and CH_4. This is relevant to further improve retrieval accuracy and to optimize the costâbenefit ratio of future satellite missions for the remote sensing of greenhouse gases. To address this question, we degrade GOSAT measurements with a spectral resolution of â 0.24 cm^(â1) step by step to a resolution of 1.5 cm^(â1). We examine the results by comparing relative differences at various resolutions, by referring the results to reference values from the Total Carbon Column Observing Network (TCCON), and by calculating and inverting synthetic spectra for which the true CO_2 and CH_4 columns are known. The main impacts of degrading the spectral resolution are reproduced for all approaches based on GOSAT measurements; pure forward model errors identified with simulated measurements are much smaller.
For GOSAT spectra, the most notable effect on CO_2 retrieval accuracy is the increase of the standard deviation of retrieval errors from 0.7 to 1.0% when the spectral resolution is reduced by a factor of six. The retrieval biases against atmospheric water abundance and air mass become stronger with decreasing resolution. The error scatter increase for CH_4 columns is less pronounced. The selective degradation of single spectral windows demonstrates that the retrieval accuracy of CO_2 and CH_4 is dominated by the spectral range where the absorption lines of the target molecule are located. For both GOSAT and synthetic measurements, retrieval accuracy decreases with lower spectral resolution for a given signal-to-noise ratio, suggesting increasing interference errors
Combined QCD and electroweak analysis of HERA data
A simultaneous fit of parton distribution functions (PDFs) and electroweak
parameters to HERA data on deep inelastic scattering is presented. The input
data are the neutral current and charged current inclusive cross sections which
were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In
addition, the polarisation of the electron beam was taken into account for the
ZEUS data recorded between 2004 and 2007. Results on the vector and
axial-vector couplings of the Z boson to u- and d-type quarks, on the value of
the electroweak mixing angle and the mass of the W boson are presented. The
values obtained for the electroweak parameters are in agreement with Standard
Model predictions.Comment: 32 pages, 10 figures, accepted by Phys. Rev. D. Small corrections
from proofing process and small change to Fig. 12 and Table
Limits on the effective quark radius from inclusive scattering at HERA
The high-precision HERA data allows searches up to TeV scales for Beyond the
Standard Model contributions to electron-quark scattering. Combined
measurements of the inclusive deep inelastic cross sections in neutral and
charged current scattering corresponding to a luminosity of around 1
fb have been used in this analysis. A new approach to the beyond the
Standard Model analysis of the inclusive data is presented; simultaneous
fits of parton distribution functions together with contributions of "new
physics" processes were performed. Results are presented considering a finite
radius of quarks within the quark form-factor model. The resulting 95% C.L.
upper limit on the effective quark radius is cm.Comment: 10 pages, 4 figures, accepted by Phys. Lett.
Search for a narrow baryonic state decaying to and in deep inelastic scattering at HERA
A search for a narrow baryonic state in the and
system has been performed in collisions at HERA with the ZEUS detector
using an integrated luminosity of 358 pb taken in 2003-2007. The search
was performed with deep inelastic scattering events at an centre-of-mass
energy of 318 GeV for exchanged photon virtuality, , between 20 and 100
. Contrary to evidence presented for such a state around 1.52
GeV in a previous ZEUS analysis using a sample of 121 pb taken in
1996-2000, no resonance peak was found in the invariant-mass
distribution in the range 1.45-1.7 GeV. Upper limits on the production cross
section are set.Comment: 16 pages, 4 figures, accepted by Phys. Lett. B. Minor changes from
journal reviewing process, including a small correction to figure
Effects of radiation damage caused by proton irradiation on Multi-Pixel Photon Counters (MPPCs)
We have investigated the effects caused by proton-induced radiation damage on
Multi-Pixel Photon Counter (MPPC), a pixelized photon detector developed by
Hamamatsu Photonics. The leakage current of irradiated MPPC samples linearly
increases with total irradiated doses due to radiation damage, which is not
completely recovered even after a year from the irradiation. No significant
change has been observed in the gains at least up to 8.0 Gy (
n/mm in 1 MeV neutron equivalent fluence, ). The device has
completely lost its photon-counting capability due to baseline fluctuations and
noise pile-up after 21 Gy irradiation ( n/mm in ), which might be problematic for some applications, such as ring-imaging
Cherenkov detectors. We have found that the pulse-height resolution has been
slightly deteriorated after 42 Gy irradiation ( n/mm in
), where the measured sample has been illuminated with a few
hundred photons. This effect should be considered in the case of
energy-measurement applications.Comment: 18 pages, 10 figure
- âŠ