282 research outputs found
Newly graduated nurses’ empowerment regarding professional competence and other work-related factors
Newly graduated nurses' empowerment regarding professional competence and other work-related factors.
BACKGROUND
Although both nurse empowerment and competence are fundamental concepts of describing newly graduated nurses' professional development and job satisfaction, only few studies exist on the relationship between these concepts. Therefore, the purpose of this study was to determine how newly graduated nurses assess their empowerment and to clarify professional competence compared to other work-related factors.
METHODS
A descriptive, cross-sectional and correlational design was applied. The sample comprised newly graduated nurses (n = 318) in Finland. Empowerment was measured using the 19-item Qualities of an Empowered Nurse scale and the Nurse Competence Scale measured nurses' self-assessed generic competence. In addition to demographic data, the background data included employment sector (public/private), job satisfaction, intent to change/leave job, work schedule (shifts/business hours) and assessments of the quality of care in the workplace. The data were analysed statistically by using Spearman's correlation coefficient as well as the One-Way and Multivariate Analysis of Variance. Cronbach's alpha coefficient was used to estimate the internal consistency.
RESULTS
Newly graduated nurses perceived their level of empowerment and competence fairly high. The association between nurse empowerment and professional competence was statistically significant. Other variables correlating positively to empowerment included employment sector, age, job satisfaction, intent to change job, work schedule, and satisfaction with the quality of care in the work unit. The study indicates competence had the strongest effect on newly graduated nurses' empowerment.
CONCLUSIONS
New graduates need support and career opportunities. In the future, nurses' further education and nurse managers' resources for supporting and empowering nurses should respond to the newly graduated nurses' requisites for attractive and meaningful work
Probing QCD dynamics in two-photon interactions at high energies
In this paper the two-photon interactions at high energies are investigated
considering different approaches for the QCD dynamics. In particular, we
calculate the total cross section in different theoretical
approches and present a comparison among the predictions of the BFKL dynamics
at leading and next-to-leading order with those from saturation physics. We
analyze the possibility that the future linear colliders could discriminate
between these different approaches.Comment: 14 pages, 2 figures. Version to be published in Journal of Physics G:
Nuclear and Particle Physic
QCD at small x and nucleus-nucleus collisions
At large collision energy sqrt(s) and relatively low momentum transfer Q, one
expects a new regime of Quantum Chromo-Dynamics (QCD) known as "saturation".
This kinematical range is characterized by a very large occupation number for
gluons inside hadrons and nuclei; this is the region where higher twist
contributions are as large as the leading twist contributions incorporated in
collinear factorization. In this talk, I discuss the onset of and dynamics in
the saturation regime, some of its experimental signatures, and its
implications for the early stages of Heavy Ion Collisions.Comment: Plenary talk given at QM2006, Shanghai, November 2006. 8 pages, 8
figure
Helping students to self-care and enhance their health-promotion skills.
Nurses have a public health role, requiring them to promote the health of individuals and communities, and to engage at a political and policy level to improve population health. There is also a professional expectation that nurses will model healthy behaviours and take responsibility for their personal health and wellbeing. However, studies have indicated that undergraduate nurses find the academic and practice elements of their nursing programmes stressful. To manage their stress many use coping behaviours that negatively impact on their health and wellbeing and may influence their ability and willingness to effectively support health promotion in practice. It is widely recognised that environments influence health outcomes and personal health behaviours. This article addresses some of the structural causes of student nurse stress and highlights a recent educational initiative at a UK university that aims to equip student nurses with the practical skills required to engage in health promotion and thereby provide benefits for service users and student nurses alike
JIMWLK evolution in the Gaussian approximation
We demonstrate that the Balitsky-JIMWLK equations describing the high-energy
evolution of the n-point functions of the Wilson lines (the QCD scattering
amplitudes in the eikonal approximation) admit a controlled mean field
approximation of the Gaussian type, for any value of the number of colors Nc.
This approximation is strictly correct in the weak scattering regime at
relatively large transverse momenta, where it reproduces the BFKL dynamics, and
in the strong scattering regime deeply at saturation, where it properly
describes the evolution of the scattering amplitudes towards the respective
black disk limits. The approximation scheme is fully specified by giving the
2-point function (the S-matrix for a color dipole), which in turn can be
related to the solution to the Balitsky-Kovchegov equation, including at finite
Nc. Any higher n-point function with n greater than or equal to 4 can be
computed in terms of the dipole S-matrix by solving a closed system of
evolution equations (a simplified version of the respective Balitsky-JIMWLK
equations) which are local in the transverse coordinates. For simple
configurations of the projectile in the transverse plane, our new results for
the 4-point and the 6-point functions coincide with the high-energy
extrapolations of the respective results in the McLerran-Venugopalan model. One
cornerstone of our construction is a symmetry property of the JIMWLK evolution,
that we notice here for the first time: the fact that, with increasing energy,
a hadron is expanding its longitudinal support symmetrically around the
light-cone. This corresponds to invariance under time reversal for the
scattering amplitudes.Comment: v2: 45 pages, 4 figures, various corrections, section 4.4 updated, to
appear in JHE
Missing-in-Metastasis/Metastasis Suppressor 1 Regulates B Cell Receptor Signaling, B Cell Metabolic Potential, and T Cell-Independent Immune Responses
Efficient generation of antibodies by B cells is one of the prerequisites of protective immunity. B cell activation by cognate antigens via B cell receptors (BCRs), or pathogen-associated molecules through pattern-recognition receptors, such as Toll-like receptors (TLRs), leads to transcriptional and metabolic changes that ultimately transform B cells into antibody-producing plasma cells or memory cells. BCR signaling and a number of steps downstream of it rely on coordinated action of cellular membranes and the actin cytoskeleton, tightly controlled by concerted action of multiple regulatory proteins, some of them exclusive to B cells. Here, we dissect the role of Missing-In-Metastasis (MIM), or Metastasis suppressor 1 (MTSS1), a cancer-associated membrane and actin cytoskeleton regulating protein, in B cell-mediated immunity by taking advantage of MIM knockout mouse strain. We show undisturbed B cell development and largely normal composition of B cell compartments in the periphery. Interestingly, we found that MIM-/- B cells are defected in BCR signaling in response to surface-bound antigens but, on the other hand, show increased metabolic activity after stimulation with LPS or CpG. In vivo, MIM knockout animals exhibit impaired IgM antibody responses to immunization with T cell-independent antigen. This study provides the first comprehensive characterization of MIM in B cells, demonstrates its regulatory role for B cell-mediated immunity, as well as proposes new functions for MIM in tuning receptor signaling and cellular metabolism, processes, which may also contribute to the poorly understood functions of MIM in cancer
Nuclear pore complex proteins mark the implantation window in human endometrium
Nucleolar channel systems (NCSs) are membranous organelles appearing transiently in the epithelial cell nuclei of postovulatory human endometrium. Their characterization and use as markers for a healthy receptive endometrium have been limited because they are only identifiable by electron microscopy. Here we describe the light microscopic detection of NCSs using immunofluorescence. Specifically, the monoclonal nuclear pore complex antibody 414 shows that NCSs are present in about half of all human endometrial epithelial cells but not in any other cell type, tissue or species. Most nuclei contain only a single NCS of uniform 1 μm diameter indicating a tightly controlled organelle. The composition of NCSs is as unique as their structure; they contain only a subset each of the proteins of nuclear pore complexes, inner nuclear membrane, nuclear lamina and endoplasmic reticulum. Validation of our robust NCS detection method on 95 endometrial biopsies defines a 6-day window, days 19-24 (±1) of an idealized 28 day cycle, wherein NCSs occur. Therefore, NCSs precede and overlap with the implantation window and serve as potential markers of uterine receptivity. The immunodetection assay, combined with the hitherto underappreciated prevalence of NCSs, now enables simple screening and further molecular and functional dissection
A genome-wide search for genes involved in type 2 diabetes in a recently genetically isolated population from the Netherlands
Multiple genes, interacting with the environment, contribute to the susceptibility to type 2 diabetes. We performed a genome-wide search to localize type 2 diabetes susceptibility genes in a recently genetically isolated population in the Netherlands. We identified 79 nuclear families with type 2 diabetes who were related within 13 generations and performed a 770-marker genome-wide scan search for shared founder alleles. Twenty-six markers yielded a logarithm of odds (LOD) score >0.59 (nominal P 1.17 (nominal P < 0.01). The strongest evidence for a type 2 diabetes locus was at marker D18S63 on chromosome 18p (LOD 2.3, P = 0.0006). This region was investigated further using additional markers. For one of these markers (D18S1105), we found a significant association with type 2 diabetes (odds ratio 6.7 [95% CI 1.5-30.7], P = 0.005 for the 97-bp allele, assuming a dominant model), which increased when limiting the analysis to patients with high BMI (12.25 [2.1-71], P = 0.003). A locus on chromosome 18p in patients with high BMI was suggested earlier by Parker et al. Our study is the first to confirm this locus
- …