
J
H
E
P
0
4
(
2
0
1
2
)
0
2
5

Published for SISSA by Springer

Received: December 17, 2011

Revised: March 12, 2012

Accepted: March 13, 2012

Published: April 5, 2012

JIMWLK evolution in the Gaussian approximation

E. Iancua and D.N. Triantafyllopoulosb

aInstitut de Physique Théorique de Saclay,
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Abstract: We demonstrate that the Balitsky-JIMWLK equations describing the high-

energy evolution of the n-point functions of the Wilson lines (the QCD scattering ampli-

tudes in the eikonal approximation) admit a controlled mean field approximation of the

Gaussian type, for any value of the number of colors Nc. This approximation is strictly

correct in the weak scattering regime at relatively large transverse momenta, where it re-

produces the BFKL dynamics, and in the strong scattering regime deeply at saturation,

where it properly describes the evolution of the scattering amplitudes towards the respec-

tive black disk limits. The approximation scheme is fully specified by giving the 2-point

function (the S-matrix for a color dipole), which in turn can be related to the solution to

the Balitsky-Kovchegov equation, including at finite Nc. Any higher n-point function with

n ≥ 4 can be computed in terms of the dipole S-matrix by solving a closed system of evolu-

tion equations (a simplified version of the respective Balitsky-JIMWLK equations) which

are local in the transverse coordinates. For simple configurations of the projectile in the

transverse plane, our new results for the 4-point and the 6-point functions coincide with the

high-energy extrapolations of the respective results in the McLerran-Venugopalan model.

One cornerstone of our construction is a symmetry property of the JIMWLK evolution,

that we notice here for the first time: the fact that, with increasing energy, a hadron is

expanding its longitudinal support symmetrically around the light-cone. This corresponds

to invariance under time reversal for the scattering amplitudes.
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1 Introduction

The final state of an ultrarelativistic hadron-hadron collision, as currently explored at RHIC

and the LHC, is characterized by an extreme complexity in terms of the number and the

distribution of the produced particles. The study of multiparticle correlations represents

an essential tool for organizing this complexity and extracting physical information out of

it. In particular, a recent measurement at RHIC of di-hadron correlations in deuteron-gold

collisions [1] revealed an interesting phenomenon — the azimuthal correlations are rapidly

suppressed when increasing the rapidity towards the fragmentation region of the deuteron

—, which is qualitatively [2–5] and even semi-quantitatively [6, 7] consistent with the phys-

ical picture of gluon saturation in the nuclear wavefunction. For this interpretation to be

firmly established, one needs a more precise understanding of the multi-particle correlations

in the high-energy scattering and, in particular, of their evolution with increasing rapidity.

This triggered new theoretical studies [8–12] of many-body correlations in the color glass

condensate (CGC), which is the QCD effective theory for high-energy evolution and gluon

saturation, to leading logarithmic accuracy at least.

The central ingredient in the CGC theory is the JIMWLK (Jalilian-Marian, Iancu,

McLerran, Weigert, Leonidov, Kovner) equation [13–20], a functional renormalization

group equation of the Fokker-Planck type which describes the non-linear evolution of the
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gluon distribution in the hadron wavefunction with increasing rapidity, or decreasing the

gluon longitudinal momentum fraction x. When applied to an asymmetric, ‘dilute-dense’,

scattering (like a pA collision), the JIMWLK evolution can be equivalently reformulated

as an infinite hierarchy of ordinary evolution equations, originally derived by Balitsky [21],

which refer to gauge-invariant correlations built with products of Wilson lines. A ‘Wilson

line’ is a path-ordered exponential of the color field in the target. It describes the scatter-

ing between a parton from the projectile (the proton) and the dense gluonic system in the

target (the nucleus), in the eikonal approximation. Via the optical theorem, the n-point

functions of the Wilson lines can be related to cross-sections for particle production in pA

collisions. For instance, the single-inclusive quark (or gluon) production is related to the

S-matrix of a ‘color dipole’ (the 2-point function of the Wilson lines). Similarly, the pro-

duction of a pair of partons with similar rapidities is related to the ‘color quadrupole’ (the

4-point function). The suppression of azimuthal di-hadron correlations in d+Au collisions

at RHIC [1] occurs in the right range of transverse momenta, of the order of the nuclear

saturation momentum Qs ∼ 1GeV, to be interpreted as a result of gluon saturation and

multiple interactions in the scattering of the quadrupole. Such non-linear phenomena are

mean field effects, which are likely to be correctly described by the JIMWLK evolution,

although the latter is known to miss another important class of correlations — those asso-

ciated with gluon number fluctuations in the dilute regime, or ‘Pomeron loops’1 [23–27].

Motivated by the above considerations, there were several recent studies of the

quadrupole evolution in the framework of the Balitsky-JIMWLK equations [10–12]. The

results in ref. [11] appeared as particularly intriguing. In that paper, one has numerically

solved the JIMWLK equation by using its representation as a functional Langevin pro-

cess [28] and used the results to evaluate the quadrupole S-matrix for different rapidities

and for special configurations of the 4 external points in the transverse plane. Remarkably,

the results thus obtained show a very good agreement with the heuristic extrapolation to

high energy of the corresponding results in the McLerran-Venugopalan (MV) model [29, 30].

We recall that the MV model refers to a large nucleus (A ≫ 1) at not too high energy

(where the effects of the evolution are still negligible) and that in this model the CGC

weight function is taken to be a Gaussian: the only non-trivial correlation of the color

fields in the nucleus is their 2-point function, the ‘unintegrated gluon distribution’. The

‘high-energy extrapolation’ alluded to above refers to using the MV expression for the

quadrupole S-matrix in terms of the dipole S-matrix [3, 8], but with the latter taken from

the numerical solution to the JIMWLK equation at the rapidity of interest.

Such extrapolations have often been used for phenomenological studies [3, 8, 31–35],

but their justification from the viewpoint of the high-energy evolution remained obscure.

A Gaussian Ansatz has also been used for mean field studies of the Balitsky-JIMWLK evo-

lution [36–39]. But these previous studies have not convincingly addressed the issue of the

validity of the Gaussian approximation — in particular, they did not justify its suitability

for describing higher n-point functions, such as the quadrupole. (The only, qualitative,

1The ‘Pomeron loops’ are formally higher order effects and, moreover, they are supressed by the running

of the coupling — at least in the calculation of the single inclusive particle production [22]. However, there

is currently no reliable estimate of their effects on correlations in multi-particle production.
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attempt in that sense is the ‘random phase approximation’ proposed in ref. [39]; see the

discussion in section 3.4 below.) In principle, there is no contradiction between having a

Gaussian weight function for the target field and still generating non-trivial correlations in

the scattering of many-body projectiles: indeed, the scattering amplitudes are built with

Wilson lines, which are non-linear in the target field to all orders. But within the context

of the JIMWLK evolution, such Gaussian approximations seem to be prohibited by the

highly non-linear structure of the evolution equation, which is the mathematical expression

of gluon saturation.

In spite of this theoretical prejudice, the numerical results in ref. [11] suggest that

a Gaussian approximation to the JIMWLK evolution may nevertheless work. Another

piece of evidence in that sense emerges from the recent analytic study in ref. [12]. There,

we have constructed an approximate version of the Balitsky-JIMWLK hierarchy which is

simple enough to allow for explicit solutions. Then we have showed that, for the special

configurations of the quadrupole considered in ref. [11], these approximate solutions coin-

cide with the respective predictions of the MV model extrapolated to high energy. But

in that context too, the similarity with the MV model appears as merely an ‘accident’,

with no deep motivation: the simplified hierarchy proposed in ref. [12] is generated by the

‘virtual’ piece of the JIMWLK Hamiltonian, which is non-linear in the target field and

therefore seems incompatible with a Gaussian approximation. Moreover, the approxima-

tions in ref. [12] have been justified only in the limit where the number of colors Nc is large

(formally, Nc → ∞). This does not explain the observation in ref. [11] that the numerical

solutions to the JIMWLK evolution for Nc = 3 are better reproduced by the finite–Nc

version of the MV model (with Nc = 3, of course) than by its large–Nc limit.

Our purpose in the present analysis is to clarify such ‘coincidences’ and ‘apparent

contradictions’ by resolving the aforementioned tensions between the simplified hierarchy

proposed in ref. [12], the Gaussian approximation, and the large–Nc limit. The results that

we shall obtain can be summarized as follows. We shall demonstrate that the JIMWLK

equation admits indeed an approximate Gaussian solution for the CGC weight function,

that this solution is unique within the limits of its accuracy, and that it is tantamount to

a simplified system of evolution equations, which are linear (while being consistent with

unitarity) and local in the transverse coordinates. In the limit where Nc → ∞, these new

equations reduce to those previously proposed in ref. [12]. The ultimate outcome of our

analysis is a global approximation to the Balitsky-JIMWLK hierarchy, which is valid for any

Nc and allows one to construct explicit, analytic, solutions for all the n-point functions of

the Wilson lines. These approximate solutions are strictly correct in the limiting regimes at

very large (k⊥ ≫ Qs(Y )) and, respectively, very small (k⊥ ≪ Qs(Y )) transverse momenta,

and provide a smooth (infinitely differentiable) interpolation between these limits. Here,

Qs(Y ) denotes the saturation momentum in the target at a rapidity Y equal with the

rapidity separation between the target and the projectile.

To describe our results in more detail, let us first explain the distinction between ‘real’

and ‘virtual’ terms in the Balitsky-JIMWLK equations. The ‘real’ terms describe the

evolution of the projectile via the emission of small–x gluons, whereas the ‘virtual’ terms

express the probability for the projectile not to evolve, i.e. not to radiate such (small–x)
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gluons. The ‘virtual’ terms dominate the evolution in the approach towards the unitarity

(or ‘black disk’) limit, since in that regime the scattering is strong and the projectile has

more chances to survive unscattered if it remains ‘simple’ — i.e., if it does not evolve by

emitting more gluons. By the same token, the ‘virtual’ terms control the evolution of the

many-body correlations which, within the context of JIMWLK, are built exclusively via

non-linear effects (multiple scattering and gluon recombination) in the regime of strong

scattering. More precisely, the ‘real’ terms are important for that process too — they

include the non-linear effects responsible for unitarity and saturation —, but deeply at

saturation their role becomes very simple: they merely prohibit the emission of new gluons

with low transverse momenta k⊥ . Qs(Y ). Thus, one can follow the evolution of correla-

tions at saturation by keeping only the ‘virtual’ terms in the Balitsky-JIMWLK equations,

but supplementing them with a phase-space cutoff which expresses the effect of the ‘real’

terms. (This is strictly correct in a ‘leading-logarithmic approximation’ to be detailed in

section 3.4.) Moreover, since the simplified equations thus obtained are linear, they can be

extended to also cover the BFKL evolution in the weak scattering regime at k⊥ ≫ Qs(Y ).

Indeed, in that regime and to the accuracy of interest, the n-point functions of the Wil-

son lines reduce to linear combinations of the dipole scattering amplitude, with the latter

obeying the BFKL equation. The BFKL dynamics involves both ‘real’ and ‘virtual’ terms,

but it can be effectively taken into account by tuning the kernel in the ‘virtual’ terms —

namely, by requiring this kernel to approach the solution to the BFKL equation at large k⊥.

The above considerations, to be substantiated by the subsequent analysis, explain why

it is possible to approximate the Balitsky-JIMWLK equations by simpler equations which

are linear and whose overall structure is inherited from the ‘virtual’ terms in the original

equations. Similar considerations have underlined our previous construction in ref. [12],

but their generalization to finite Nc (that we shall provide in this paper) turns out to be

highly non-trivial.

Another subtle aspect of our present analysis is the recognition of the fact that the

simplified equations that we shall propose (for either finite or infinite Nc) correspond to

a Gaussian approximation for the CGC weight function. A priori, the association of a

linear system of equations with a Gaussian approximation may look natural, but in the

present case this is complicated by the fact that, as alluded to before, the ‘virtual’ piece of

the JIMWLK Hamiltonian is non-linear in the target field to all orders. Such a non-linear

structure seems to preclude any Gaussian solution. The resolution of this mathematical

puzzle turns out to be interesting on physical grounds, as it sheds new light on the physical

picture of the JIMWLK evolution. Namely, we shall show that the Wilson lines within the

‘virtual’ Hamiltonian do not represent genuine non-linear effects associated with saturation,

rather they express the physical fact that, with increasing energy, the longitudinal support of

the target expands symmetrically around the light-cone. That is, in contrast to a widespread

opinion in the literature (see e.g. [28, 36–38, 40]), which was based on a misinterpretation of

the mathematical structure of the JIMWLK equation, the gluon distribution in the target

expands simultaneously towards larger and respectively smaller values of x−, in such a

way to remain symmetric around x− = 0. (We assume the target to propagate along the

positive x3 axis at nearly the speed of light and we define x− = (x0 − x3)/
√
2.) In turn,
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this symmetry has physical consequences for the multi-partonic scattering amplitudes: it

implies that the n-point functions of the Wilson lines with n ≥ 4 obey a special permutation

symmetry — the mirror symmetry — which expresses their invariance under time reversal.

To summarize, a Gaussian weight function which is symmetric in x− and whose kernel

is energy-dependent and interpolates between the solution to the BFKL equation at high

transverse momenta k⊥ ≫ Qs and the JIMWLK (or ‘dipole’) kernel at low momenta

k⊥ ≪ Qs, provides a reasonable approximation to the JIMWLK equation, which is strictly

correct in the limiting regimes alluded to above (for any value of Nc). Within its limits of

validity, this approximation is essentially unique: different constructions for the kernel can

differ from each other only in the transition region around saturation, which is anyway not

under control within the present approximation.

In practice, it is convenient to trade this kernel for the dipole S-matrix, which in turn

can be obtained either as the solution to the Balitsky-Kovchegov (BK) equation [21, 41], or

by solving a self-consistency condition similar to that in ref. [36]. (The differences between

these two expressions for the kernel should be viewed as an indicator of the stability of the

approximation scheme.) Then the n-point functions with n ≥ 4 (quadrupole, sextupole

etc) can be determined in terms of the 2-point function (the dipole S-matrix) by solving

the evolution equations associated with the Gaussian weight function. These equations

become particularly simple at large Nc, where they reduce to the equations proposed in

ref. [12] and can be explicitly solved for arbitrary configurations of the n external points

in the transverse plane.

For finite Nc and for generic configurations, the equations are more complicated, as

they couple the evolution of the various n-point functions with the same value of n. (For

instance, the quadrupole mixes under the evolution with a system of two dipoles.) Yet,

explicit solutions can be obtained under the simplifying assumption that the kernel of the

Gaussian is a separable function of the rapidity and the transverse coordinates (plus an

arbitrary function of Y ; see section 4.2 for details). This is certainly not the case for the

actual kernel (say, as given by the solution to the BK equation), but it is a good piecewise

approximation to it and it is furthermore true for the MV model,2 that we shall take as

our initial condition at low energy. So, not surprisingly, the expressions for the n-point

functions that we shall obtain within this scenario are formally similar to the respective

predictions of the MV model. One can reverse this last argument as follows: given that the

Gaussian weight function is a good, piecewise approximation to the JIMWLK evolution,

as we shall demonstrate, and that the kernel of this Gaussian can be taken to be separable

within the relevant kinematical regimes, we expect the predictions of this approximation

to be very close to those of the MV model extrapolated to high energy.

For special configurations which are highly symmetric, exact solutions can be obtained

at finite Nc even without assuming separability. We shall study various examples of this

type for the 4-point function and the 6-point function, and thus find some surprising

factorization properties, that would be interesting to test against numerical solutions to

2By ‘rapidity-dependence’ within the MV model, we more precisely mean the dependence upon the

longitudinal coordinate x−. Within the JIMWLK evolution, there is a one-to-one correspondence between

Y and x− (see the discussion in section 2.3 below).
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the JIMWLK equation. For one particular configuration of the 6-point function, the exact

numerical result is already known [11] and our respective analytic solution appears to agree

with it quite well.

2 The Balitsky-JIMWLK evolution equations

In this section, we shall briefly review the general formulation of the JIMWLK evolution

and then use the evolution equations satisfied by the dipole and the quadrupole S-matrices

in order to illustrate various properties of the evolution, which are important for what

follows: the role and origin of the ‘real’ and ‘virtual’ terms, the factorization of multi-

trace observables at large Nc, and, especially, the symmetric expansion of the longitudinal

support of the target and the ensuing, ‘mirror’, symmetry of the n-point functions with

n ≥ 4.

2.1 JIMWLK evolution: a brief reminder

The color glass condensate is an effective theory for the small–x part of the wavefunction

of an energetic hadron: the gluons carrying a small fraction x ≪ 1 of the hadron’s longitu-

dinal momentum are described as a random distribution of classical color fields generated

by sources with larger momentum fractions x′ ≫ x. Given the high-energy kinematics,

in particular the fact that the distribution of the color sources is ‘frozen’ by Lorentz time

dilation, this color field can be chosen (in a suitable gauge) to have a single non-zero com-

ponent, namely Aµ
a(x) = δµ+αa(x

−,x) for a hadron moving along the positive z axis3 (a

‘right mover’). All the correlations of this field are encoded into a functional probability

distribution, the ‘CGC weight function’ WY [α], which contains information about the evo-

lution of the color sources with increasing ‘rapidity’ Y ≡ ln(1/x), from some initial value

Y0 up to the value Y of interest. In the high energy regime where αs(Y − Y0) & 1 and to

leading logarithmic accuracy with respect to the large logarithm Y − Y0 = ln(x0/x), this

evolution is described by a functional renormalization group equation for WY [α], known as

the JIMWLK equation. The latter can be given a Hamiltonian form,

∂

∂Y
WY [α] = HWY [α] , (2.1)

where H is the JIMWLK Hamiltonian — a second-order, functional differential operator,

whose most convenient form for the present purposes is that given in [42] and reads

H = − 1

16π3

∫

uvz

Muvz

(
1 + Ṽ †

uṼv − Ṽ †
uṼz − Ṽ †

z Ṽv

)ab δ

δαa
u

δ

δαb
v

, (2.2)

where we use the notation
∫
u... ≡

∫
d2u . . . to simplify writing, M is the ‘dipole kernel’,

Muvz ≡ (u− v)2

(u− z)2(z − v)2
, (2.3)

3We use standard definitions for the light-cone coordinates: xµ = (x+, x−,x), with x± = (t ± z)/
√
2

and x = (x, y). The field αa is independent of the light-cone time x+, because of Lorentz time dilation.
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and Ṽ † and Ṽ are Wilson lines in the adjoint representation:

Ṽ †
x ≡ Pexp

[
ig

∫
dx−αa(x

−,x)T a

]
, (2.4)

with P denoting path-ordering in x−. The above form of the Hamiltonian is valid only when

acting on gauge-invariant functionals of αa, which will always be the case throughout our

analysis. In fact, the observables of interest are gauge-invariant products of Wilson lines

(see below).

The functional derivatives in eq. (2.2) are understood to act at the largest value of

x−, that is, at the upper end point of path-ordered exponentials like that in eq. (2.4) (see

e.g. eq. (2.11)). These derivatives do not commute with each other, but their commutator

is proportional to δuv (cf. eq. (2.27)) and thus vanishes when multiplied by Muvz; hence,

there is no ambiguity concerning the ordering of the functional derivatives in eq. (2.2). One

can also notice that the last two terms in the JIMWLK Hamiltonian, i.e. those proportional

to Ṽ †
uṼz and to Ṽ †

z Ṽv respectively, are in fact identical to each other, as it can be checked by

exchanging u ↔ v and a ↔ b and by using the property Ṽ † ac
z = Ṽ ca

z for color matrices in

the adjoint representation. To fully specify the problem, one also needs an initial condition

for eq. (2.1) at Y = Y0; at least for a sufficiently large nucleus, this initial condition is

provided by the McLerran-Venugopalan (MV) model [29, 30] (see section 3.2 below).

Physical observables, like scattering amplitudes for external projectiles, are represented

by gauge invariant operators Ô[α] built with the field αa, whose target expectation values

are computed via functional averaging with the CGC weight function:

〈Ô〉Y ≡
∫

DαO[α]WY [α]. (2.5)

By taking a derivative in this equation with respect to Y , using eq. (2.1), and integrating

by parts within the functional integral over α, one obtains an evolution equation for the

observable, in which the JIMWLK Hamiltonian acts on the operator Ô[α]:

∂〈Ô〉Y
∂Y

= 〈HÔ〉Y . (2.6)

Unlike the JIMWLK equation (2.1), this is not a functional equation anymore, but an

integro-differential equation. However, due to the non-linear structure of the Hamilto-

nian (2.2) with respect to the field αa, eq. (2.6) is generally not a closed equation — the

action ofH on Ô generates additional operators in the right hand side —, but just a member

of an infinite hierarchy of coupled equations — the Balitsky-JIMWLK equations. Although

mathematically equivalent, the functional equation (2.1) and the Balitsky-JIMWLK hier-

archy offer complementary perspectives over the high-energy evolution. eq. (2.1) depicts

the evolution of the target via the emission of an additional gluon with rapidity between

Y and Y +dY , in the background of the color field α generated via previous emissions, at

rapidities Y ′ ≤ Y . The Wilson lines within the structure of the Hamiltonian (2.2) describe

the scattering between this new gluon and the background field, in the eikonal approxi-

mation. The Balitsky-JIMWLK hierarchy rather refers to the evolution of the projectile,
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more precisely, of the operator which describes its scattering off the target. This scattering

is again computed in the eikonal approximation, so the operator Ô is naturally built with

Wilson lines — one such a line for each parton within the projectile.

2.2 Evolution equations for the dipole and the quadrupole

To be more explicit, we shall consider two specific projectiles: a ‘color dipole’ made with a

quark-antiquark (qq̄) pair and a ‘color quadrupole’ made with two qq̄ pairs. In both cases,

the overall color state of the partonic system is a color singlet. The S-matrix operators

describing the forward scattering of these projectiles off the CGC target read

Ŝx1x2 ≡ Ŝ
(2)
x1x2 =

1

Nc
tr(V †

x1
Vx2) , (2.7)

for the color dipole and, respectively,

Q̂x1x2x3x4 ≡ Ŝ
(4)
x1x2x3x4 =

1

Nc
tr(V †

x1
Vx2V

†
x3
Vx4) , (2.8)

for the color quadrupole. In these equations, V † and V are Wilson lines similar to those in

eq. (2.4), but in the fundamental representation. The results that we shall obtain for these

two partonic systems will be easy to extend to projectiles made with n qq̄ pairs, for which

Ŝ
(2n)
x1x2...x2n−1x2n =

1

Nc
tr(V †

x1
Vx2 . . . V

†
x2n−1

Vx2n). (2.9)

As we shall see, within the high-energy evolution, such single-trace operators mix with the

multi-trace operators, of the form

Ô =
1

Nc
tr(V †

x1
Vx2 . . .)

1

Nc
tr(V †

y1
Vy2 . . .)

1

Nc
tr(V †

z1
Vz2 . . .). (2.10)

In order to construct evolution equations according to eq. (2.6), we need the action of the

functional derivatives w.r.t. αa on the Wilson lines. This reads (with δxu = δ(2)(x− u))

δ

δαa
u

V †
x = igδxu taV †

x ,
δ

δαa
u

Vx = −igδxuVx ta. (2.11)

By using these rules within eqs. (2.6) and (2.2), it is straightforward to derive the evolu-

tion equations satisfied by S-matrices for the dipole and the quadrupole. The respective

derivations can be found in the literature (see e.g. the appendix ref. [12]), but here we shall

nevertheless indicate a few intermediate steps (on the example of the dipole evolution), to

emphasize the origin of the various terms in the equations. To that aim, it is useful to view

the JIMWLK Hamiltonian (2.2) as the sum of two pieces, H = Hvirt +Hreal, where Hvirt

corresponds to the first two terms in eq. (2.2) and the Hreal corresponds to the last two

terms there. This division between ‘virtual’ and ‘real’ terms refers to the evolution of the

projectile (see the physical discussion after eq. (2.16) below) and should not be confounded

with the corresponding division for the evolution of the target [36, 40]. By acting with

these Hamiltonian pieces on the dipole S-matrix, one finds (with ᾱ ≡ αsNc/π).

Hvirt Ŝx1x2 = − ᾱ

2π

(
1− 1

N2
c

)∫

z

Mx1x2zŜx1x2 . (2.12)
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and respectively (recall that the last two terms in eq. (2.2), which define Hreal, are actually

identical with each other)

Hreal Ŝx1x2 =
ᾱ

π

∫

z

Mx1x2z

[(
Ṽ †
x1

)ac
Ṽ cb
z tr

(
ta V †

x1
Vx2t

b
)]

=
ᾱ

2π

∫

z

Mx1x2z

(
Ŝx1zŜzx2 −

1

N2
c

Ŝx1x2

)
, (2.13)

where the second line follows after reexpressing the adjoint Wilson line in terms of funda-

mental ones, according to

(
Ṽ †
)ac

ta = Ṽ cbtb = V †tc V. (2.14)

and then using the Fierz identity

tr
(
taAtaB

)
=

1

2
trA trB − 1

2Nc
tr(AB). (2.15)

By adding together the above results, one sees that the terms proportional to 1/N2
c , that

would be suppressed at large Nc, exactly cancel between ‘real’ and ‘virtual’ contributions,

and we are left with

∂〈Ŝx1x2〉Y
∂Y

=
ᾱ

2π

∫

z

Mx1x2z〈Ŝx1zŜzx2 − Ŝx1x2〉Y . (2.16)

This equation has the following physical interpretation: the first term in the right hand

side, which is quadratic in Ŝ and has been generated by the ‘real’ piece of the Hamiltonian,

cf. eq. (2.13), describes the splitting of the original dipole (x1, x2) into two new dipoles

(x1, z) and (z, x2), which then scatter off the target. More precisely, the evolution step

consists in the emission of a soft gluon, so the original dipole gets replaced by a quark-

antiquark-gluon system which is manifest in the first line of eq. (2.13), but in large–Nc limit

(to which refers the first term in the second line of eq. (2.13)), this emission is equivalent

to the dipole splitting alluded to above. As for the second term in eq. (2.16), i.e. the

negative term linear in Ŝ which has been produced by Hvirt, it describes the reduction in

the probability that the dipole survive in its original state — that is, the probability for

the dipole not to emit. In what follows, we shall often refer to the terms produced by

Hvirt (Hreal) as the ‘virtual’ (‘real’) terms, but one should keep in mind that not all such

terms are actually visible in the evolution equation in their standard form in the literature

(to be also used in this paper): some of these terms may have canceled between ‘real’ and

‘virtual’ contributions.

– 9 –



J
H
E
P
0
4
(
2
0
1
2
)
0
2
5

A similar discussion applies to the evolution equation for the quadrupole, which reads

∂〈Q̂x1x2x3x4〉Y
∂Y

=
ᾱ

4π

∫

z

[
(Mx1x2z +Mx1x4z −Mx2x4z)〈Ŝx1zQ̂zx2x3x4〉Y

+ (Mx1x2z +Mx2x3z −Mx1x3z)〈Ŝzx2Q̂x1zx3x4〉Y
+ (Mx2x3z +Mx3x4z −Mx2x4z)〈Ŝx3zQ̂x1x2zx4〉Y
+ (Mx1x4z +Mx3x4z −Mx1x3z)〈Ŝzx4Q̂x1x2x3z〉Y
− (Mx1x2z +Mx3x4z +Mx1x4z +Mx2x3z)〈Q̂x1x2x3x4〉Y
− (Mx1x2z +Mx3x4z −Mx1x3z −Mx2x4z)〈Ŝx1x2Ŝx3x4〉Y
− (Mx1x4z +Mx2x3z −Mx1x3z −Mx2x4z)〈Ŝx3x2Ŝx1x4〉Y

]
.

(2.17)

Namely, the terms involving 〈ŜQ̂〉Y in the right hand side are ‘real’ terms describing the

splitting of the original quadrupole into a new quadrupole plus a dipole, and have been

all generated by the action of the last two terms in the Hamiltonian (2.2). The ‘virtual’

terms involving 〈Q̂〉Y and 〈ŜŜ〉Y are necessary for probability conservation, and have been

generated by the first two terms in the Hamiltonian. Once again, all the terms subleading

at large Nc (as separately generated by Hvirt and Hreal) have canceled in the final equation.

The above features are generic: they apply to the evolution equations obeyed by all the

single-trace observables like eq. (2.9). As visible on eqs. (2.16) and (2.17), these equations

are generally not closed: they couple single-trace observables with the multi-trace ones.

E.g., the equation for the quadrupole also involves the 4-point function 〈ŜŜ〉Y and the 6-

point function 〈ŜQ̂〉Y , which in turn are coupled (via the respective evolution equations) to

even higher-point correlators. The equations obeyed by the multi-trace observables exhibit

an interesting new feature: they involve genuine 1/N2
c corrections, as generated when the

two functional derivatives in eq. (2.2) act on Wilson lines which belong to different traces

(see e.g. appendix F in [43] for an example). At large Nc, these corrections can be neglected

and then it is easy to check that the hierarchy admits the factorized solution

〈Ô〉Y ≃
〈 1

Nc
tr(V †

x1
Vx2 . . .)

〉

Y

〈 1

Nc
tr(V †

y1
Vy2 . . .)

〉

Y

〈 1

Nc
tr(V †

z1
Vz2 . . .)

〉

Y
. . . , (2.18)

provided this factorization is already satisfied by the initial conditions. Then the hierarchy

drastically simplifies: it breaks into a set of equations which can be solved one after the

other (at least in principle). Namely, eq. (2.16) becomes a closed equation for 〈Ŝ〉Y (the BK

equation [21, 41]), eq. (2.17) becomes an inhomogeneous equation for 〈Q̂〉Y with coefficients

which depend upon 〈Ŝ〉Y [3], and so on. In practice, however, the resolution of these

equations is hindered by their strong non-locality in the transverse coordinates. So far,

only the (numerical) solution to the BK equation has been explicitly constructed.

2.3 The mirror symmetry

In this subsection, we shall discuss a symmetry property of the JIMWLK equation, which

has not been noticed in the previous literature and which has far-reaching consequences:

the symmetry of the target field distribution (the CGC) under reflection in x−.
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Figure 1. A pictorial representation of the color flow with the operator Q̂x1x2x3x4
(left) and

respectively Q̂x1x4x3x2
(right).

To start with, we shall identify a mirror symmetry in the evolution equation (2.17)

for the quadrupole, that can be easily demonstrated in the large–Nc limit, but is likely to

hold for any Nc. (It does so, at least, in the Gaussian approximation that we shall later

construct.) Specifically, if the quadrupole S-matrix 〈Q̂x1x2x3x4〉Y is symmetric under the

exchange of the two antiquark Wilson lines (that is, the Wilson lines at x2 and x4) at the

initial rapidity Y0 — a condition which is indeed satisfied within the MV model [8] —, then

this symmetry is preserved by the evolution. That is, for any Y ≥ Y0, one has

〈Q̂x1x2x3x4〉Y = 〈Q̂x1x4x3x2〉Y . (2.19)

A similar property holds for the exchange of the quark Wilson lines at x1 and x3, but this

is not independent of eq. (2.19), since Q̂x3x2x1x4 = Q̂x1x4x3x2 by the cyclic symmetry of

the trace. To demonstrate eq. (2.19), let us consider the respective anti–symmetric piece:

Q̂ asym
x1x2x3x4

≡ 1

2Nc

[
tr(V †

x1
Vx2V

†
x3
Vx4)− tr(V †

x1
Vx4V

†
x3
Vx2)

]
. (2.20)

By using eq. (2.17), it is easy to see that the associated expectation value obeys the following

evolution equation:

∂〈Q̂ asym
x1x2x3x4〉Y
∂Y

=
ᾱ

4π

∫

z

[
(Mx1x2z +Mx1x4z −Mx2x4z)〈Ŝx1zQ̂

asym
zx2x3x4

〉Y

+ (Mx1x2z +Mx2x3z −Mx1x3z)〈Ŝzx2Q̂
asym
x1zx3x4

〉Y
+ (Mx2x3z +Mx3x4z −Mx2x4z)〈Ŝx3zQ̂

asym
x1x2zx4

〉Y
+ (Mx1x4z +Mx3x4z −Mx1x3z)〈Ŝzx4Q̂

asym
x1x2x3z

〉Y
− (Mx1x2z +Mx3x4z +Mx1x4z +Mx2x3z)〈Q̂ asym

x1x2x3x4
〉Y
]
.

(2.21)

At large Nc, where one can factorize 〈ŜQ̂ asym〉Y ≃ 〈Ŝ〉Y 〈Q̂ asym〉Y , eq. (2.21) becomes a

homogeneous equation which implies that 〈Q̂ asym〉Y = 0 at any Y provided this condition

was satisfied at Y0. In turn, this implies the symmetry property (2.19).

By inspection of the higher equations in the Balitsky-JIMWLK equations, one can

check that a similar symmetry holds for all the n-point functions of the Wilson lines.
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Figure 2. A different pictorial representation of the operators Q̂x1x2x3x4
(left) and Q̂x1x4x3x2

(right), which emphasizes the fact that they get exchanged with each other via time reversal, with

‘time’= x−.

For instance, the equation obeyed by the sextupole S-matrix 〈Ŝ(6)〉Y is explicitly shown in

appendix B of ref. [12]. From this equation, one can read the following symmetry property:

〈Ŝ(6)
x1x2x3x4x5x6〉Y = 〈Ŝ(6)

x1x6x5x4x3x2〉Y . (2.22)

The generalization of this property to the 2n-point function shown in eq. (2.9) reads

〈Ŝ(2n)
x1x2...x2n−2x2n−1x2n〉Y = 〈Ŝ(2n)

x1x2nx2n−1x2n−2...x2〉Y . (2.23)

To better understand the content of this symmetry, it is useful to give a pictorial

representation for it. To that aim, consider a generic configuration of the quadrupole

operator Q̂x1x2x3x4 in the transverse plane, as illustrated in figure 1, and join the four

points by oriented lines, which follow the direction of color multiplication. In this way,

one constructs a closed, oriented, contour, whose orientation indicates the flow of color

within the operator. By repeating this procedure for the ‘permuted’ operator Q̂x1x4x3x2 ,

one obtains a similar contour, where however the orientation of the color flow is reversed.

One can similarly check that, for a general n-point function, the symmetry property (2.23)

refers to changing the contour orientation, say from clockwise to counterclockwise. Such a

change would also result from the reflection in a mirror, so we shall refer to the symmetry

property (2.23) as the ‘mirror symmetry’. Additional arguments in the favor of this name

will be given below.

There are several reasons why this this symmetry is so important for us here. First, as

we shall shortly argue, this corresponds to an important symmetry property of the scatter-

ing amplitudes: their invariance under time-reversal. Second, the way how this symmetry

is actually preserved by the JIMWLK evolution is very interesting as it sheds light on the

physical picture of the target field distribution: with increasing Y , the color glass conden-

sate expands symmetrically around x− = 0. Third, this symmetry will later guide us in

the construction of a mean field approximation to the Balitsky-JIMWLK hierarchy.

To understand the relation to time-reversal, let us present another pictorial represen-

tation for the two quadrupole operators which enter eq. (2.19): this is shown in figure 2,

where the transverse space is schematically represented by the vertical axis, whereas the
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horizontal axis refers to x− — the light-cone time for the projectile. The Wilson lines are

now explicitly shown, as the oriented horizontal lines extending along the x− axis and

connected with each other, via matrix multiplication, at x− → ±∞. Once again, the ori-

entation of these lines corresponds to the direction of the color flow. Clearly, these two

figures get exchanged with each other when inverting the arrow of time. In the left figure,

corresponding to Q̂x1x2x3x4 , the 4-body system starts at x− → −∞ as a set of 2 dipoles,

(x1,x2) and (x3,x4), which then exchange color with each other at x− → ∞ and thus re-

connect into the new dipoles (x1,x4) and (x3,x2). In the right figure, the opposite process

happens: the system starts with the dipoles (x1,x4) and (x3,x2), which then reconnect at

x− → ∞ into the dipoles (x1,x2) and (x3,x4), thus yielding the quadrupole Q̂x1x4x3x2 .

Hence, the symmetry property (2.19) corresponds indeed to invariance under time-reversal,

as anticipated.

We now turn to the physical interpretation of the mirror symmetry in the context of

the JIMWLK evolution. One can check that the symmetric structure of the virtual terms

in eq. (2.17) stems from the combined action of the first two terms in eq. (2.2). Half of the

‘virtual’ terms are generated by the first term, proportional to the color unity matrix, but

by themselves these terms do not show the mirror symmetry; this symmetry is recovered

only after adding the other half of the ‘virtual’ terms, as generated by the second term in

eq. (2.2), proportional to Ṽ †
uṼv. As an example, consider two of the ‘virtual’ terms in the

r.h.s. of eq. (2.17) whose coefficients get exchanged with each other under the exchange

x2 ↔ x4: Mx1x4z〈Q̂x1x2x3x4〉 and Mx1x2z〈Q̂x1x2x3x4〉. The first of them is generated

when acting with the first term in the Hamiltonian on the pair (x1,x4) of the quadrupole,

whereas the second one emerges from the action of the second term in H on the pair

(x1,x2).

Hence, to elucidate this symmetry, one needs to better understand the action of the

JIMWLK Hamiltonian. As manifest from eq. (2.11), the functional derivatives within the

Hamiltonian act as generators of infinitesimal color rotations of the Wilson lines at their

upper end point in x−; that is, they act as Lie derivatives for the color group SU(Nc). These

color rotations express the evolution of the target color field αa(x
−,x) with increasing

rapidity: performing one infinitesimal step in the evolution, from Y to Y + dY , amounts

to ‘integrating out’ one layer of quantum fluctuations within the target wavefunction —

the gluons with longitudinal momentum fractions between x = e−Y and x′ = e−(Y+dY ) —

and results in adding one additional layer to the classical color field αa(x
−,x). The fact

that the JIMWLK Hamiltonian acts on the Wilson lines via color rotations at the largest

value in x− means that the new layer of color field is located at larger x− as compared to

the previous layers.

This argument makes it tempting to conclude that, with increasing Y , the support

of the target field αa(x
−,x) extends only towards increasing x−, thus yielding a field

distribution which is asymmetric in x−. This was indeed the prevailing viewpoint in the

original literature on the JIMWLK evolution (see e.g. [36, 40]), but now we shall argue that

this is actually not quite right: although the functional derivatives in eq. (2.2) have a one-

sided action which amounts to color rotations at the largest value of x− alone, the overall

structure of the Hamiltonian is such that the target field is nevertheless built symmetrically
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in x−. In fact, it is precisely this symmetry of the target field distribution under reflection

in x− which is responsible for the mirror symmetry in the evolution equations.

To see that, it is useful to notice that eq. (2.2) can be alternatively rewritten as [44, 45]

H =
g2

16π3

∫

uvz

Muvz

(
Ja
LuJ

a
Lv + Ja

RuJ
a
Rv + 2Ṽ ab

z Ja
RuJ

b
Lv

)
, (2.24)

where Ja
Lu and Ja

Rv are functional differential operators acting as ‘left’ and ‘right’ Lie

derivatives — that is, the generators of infinitesimal color rotations at the largest and,

respectively, smallest value of x−. They are defined as

Ja
Lu ≡ − 1

ig

δ

δαa
u

, Ja
Ru ≡ 1

ig
Ṽ ab
u

δ

δαb
u

, (2.25)

and satisfy

Ja
Lu V †

x = −δxu taV †
x , Ja

Ru V †
x = δxu V †

xt
a, (2.26)

where the second equation follows from the first one after using eq. (2.14). These equations

imply the following commutation relations

[Ja
Lu, J

b
Lv] = ifabcJc

Luδuv, [Ja
Ru, J

b
Rv] = ifabcJc

Ruδuv, [Ja
Lu, J

b
Rv] = 0 , (2.27)

showing that the two sets of generators satisfy two independent SU(Nc) Lie algebras.

The physical interpretation of the various terms in eq. (2.24) is quite transparent: the

action of Ja
Lu on the quark Wilson line V †

x (the first equation in eq. (2.26)) amounts to

the addition of an infinitesimal layer of color field at the largest values of x−, whereas

the action of Ja
Ru is tantamount to a corresponding addition at the smallest values of

x−. Hence, the manifest symmetry of eq. (2.24) under the exchange L ↔ R implies that,

during the high-energy evolution, the distribution of the target color field αa(x−,x) — by

which we mean its support and correlations — is built symmetrically in x− around x− = 0.

Moreover, this is also the origin of the mirror symmetry since, as previously noticed, the

latter follows from the combined action of the first two terms in the Hamiltonian (2.2),

or (2.24) — those which get interchanged with each other under the permutation L ↔ R

of the Lie derivatives.

To better appreciate the differences between an evolution which is symmetric in x−

and one which is not, it is instructive to consider the evolution of a Wilson line, say for a

quark projectile. When computing the target average (2.5) with the CGC weight function

at rapidity Y , the support of the color field αa(x
−,x) is restricted to −x−M ≤ x− ≤ x−M

with x−M (Y ) = x−0 exp(Y − Y0). (This follows from the uncertainty principle: the softest

gluon modes that have been integrated over have longitudinal momentum p+ = xP with

x = e−Y , with P = the total hadron momentum; hence, they are delocalized in x− over a

distance ∼ 1/p+ ∝ eY .) Thus, the quark Wilson line can be equivalently rewritten as

V †
x ≡ Pexp

[
ig

∫ x−

M

−x−

M

dx−αa(x
−,x)ta

]
. (2.28)

This makes it manifest that, with increasing Y , the Wilson line ‘grows’ simultaneously at

its both endpoints. To visualize the effect of one step in the evolution (Y → Y + dY ), it
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is useful to discretize rapidity by writing Yn = nǫ, with ǫ an infinitesimal rapidity interval.

Then under one additional step n → n + 1, the upper bound of the support extends as

x−n ≡ x−M (Yn) → x−n+1 = x−n (1 + ǫ) and the Wilson lines evolves as V †
n → V †

n+1, with

V †
n+1(x) = exp[igǫαn+1(x)]V

†
n (x) exp[igǫα−(n+1)(x)] (2.29)

where

αn+1(x) ≡ x−nαa(x
−
n+1,x)t

a and α−(n+1)(x) ≡ x−nαa(−x−n+1,x)t
a (2.30)

represent the additional fields generated in this evolution step per unit of space-time ra-

pidity. The infinitesimal gauge rotations associated with these new fields can be expanded

in powers of ǫ. Strictly speaking, this expansion must be pushed to quadratic order in ǫ, to

match with the fact that the evolution Hamiltonian (2.24) involves second order functional

derivatives. However, the quadratic terms arising from the expansion of a given Wilson line

do not contribute to the evolution of gauge-invariant observables: they would yield ‘tad-

pole’ contributions ∝ δuv, but the dipole kernel in the Hamiltonian vanishes when u = v.

In other terms, the two functional derivatives within H must act on different Wilson lines

within the observable to give a non-zero result. So, we can restrict the expansion of (2.29)

to linear order in ǫ, which yields

V †
n+1(x)− V †

n (x) = igǫ
[
αn+1(x)V

†
n (x) + V †

n (x)α−(n+1)(x)
]
+O(ǫ2) . (2.31)

Clearly, the two terms in the r.h.s. correspond to the infinitesimal, ‘left’ and ‘right’, color

rotations in eq. (2.26). If instead of the symmetric evolution above, one would have con-

sidered an asymmetric one, where the target fields expands towards positive values of x−

alone, the analog of eqs. (2.29)–(2.31) would have involved the ‘left’ infinitesimal color

precession alone.

In ref. [28], the JIMWLK evolution has been reformulated as a random walk in the

space of Wilson lines, which is formally such that one additional step corresponds to an

infinitesimal rotation of V †(x) on the ‘left’ alone. However, by inspection of the manip-

ulations there, one can check that the additional contribution αn+1(x) to the target field

in the (n + 1)th step is such that, in reality, that step simultaneously generate a color

precession on the ‘left’ and on the ‘right’. That is, the Langevin process introduced in

ref. [28] does in fact describe a symmetric evolution for the Wilson lines (or for the target

field distribution), although this has not been recognized there.

3 The Gaussian approximation

In this section we shall demonstrate that the JIMWLK equation for the CGC weight

function admits an approximate Gaussian solution which properly captures both the BFKL

dynamics in the dilute regime at k⊥ ≫ Qs(Y ) and the approach towards the black disk limit

in the saturation regime at k⊥ ≪ Qs(Y ). Our analysis improves over previous, related,

constructions in the literature [36–38] at two important levels: (i) we actually justify the

Gaussian approximation — including for the description of the higher-point correlation
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functions and for finite Nc —, on the basis of the Balitsky-JIMWLK equations; (ii) we

implement the ‘mirror’ symmetry discussed in section 2.3, that is, we construct a Gaussian

distribution which is symmetric in x− at any Y . As we shall see, this last condition is

in fact compulsory to achieve a faithful description of the JIMWLK dynamics deeply at

saturation.

The material of this section is organized as follows: the Gaussian weight function is

introduced in section 3.1, compared to the MV model in section 3.2, and justified in sec-

tions 3.3 and 3.4 by comparison with piecewise approximations to the JIMWLK equations

in the limiting regimes alluded to above.

3.1 The Gaussian weight function

The most general Gaussian weight function which is consistent with gauge symmetry4 and

describes a target field distribution which is symmetric in x− reads

WY [α] = NY exp

[
−1

2

∫ x−

M

−x−

M

dx−
∫

x1x2

αa(x
−,x1)γ̄

−1(x−,x1,x2)αa(x
−,x2)

]
δY [α] ,

(3.1)

where x−M (Y ) = x−0 exp(Y − Y0) and the kernel γ̄−1(x−,x1,x2) is an even function of x−,

assumed to be invertible. The functional δ-function δY [α] ensures that the target field

vanishes at larger longitudinal coordinates |x−| > x−M (Y ):

δY [α] ≡
∏

|x−|>x−

M

∏

x

∏

a

δ(αa(x
−,x)) . (3.2)

Here, δ(αa(x
−,x)) is the usual δ-function and a discretization of the space-time is under-

stood. Finally, the overall normalization factorNY in eq. (3.1) is such that
∫
DαWY [α] = 1.

Equation (3.1) implies that the only non-trivial correlation of the target fields is their

2-point function, which is moreover local in x−:

〈αa(x
−
1 ,x1)αb(x

−
2 ,x2)〉Y = δabΘ

(
x−M (Y )− |x−1 |

)
δ(x−1 − x−2 ) γ̄(x

−
1 ,x1,x2) . (3.3)

Within this Gaussian approximation, the locality in x− is required by gauge symmetry: to

preserve the latter, any non-locality in x− should be accompanied by gauge links (Wilson

lines) built with the field αa, which would spoil Gaussianity.

The Gaussian distribution (3.1) is manifestly symmetric in x− around x− = 0 and this

symmetry is preserved by the high energy evolution. In fact, eq. (3.1) depends upon Y

only via the two endpoints, x−M (Y ) and −x−M (Y ), of the support in x−, meaning that the

high-energy evolution proceeds via the symmetric expansion of the color field distribution

towards both larger and smaller values of x−. Specifically, by using the methods in refs. [28,

36], one can check that the Gaussian weight function (3.1) obeys the following evolution

equation:

∂WY [α]

∂Y
=

1

2

∫

uv

γ̄Y (u,v)

(
δ

δαa
Lu

δ

δαa
Lv

+
δ

δαa
Ru

δ

δαa
Rv

)
WY [α] , (3.4)

4By ‘gauge symmetry’ we more precisely have in mind here the class of gauges within which the target

color field has the structure Aµ
a = δµ+αa. Some gauge artifacts, which are inherent in eq. (3.1) but turn

out to be harmless in practice, will be later discussed.
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where the ‘left’ (‘right’) functional derivatives act on the target field at the largest (smallest)

value of x−, that is, at x− = x−M (Y ) and respectively x− = −x−M (Y ). Also γ̄Y (x1,x2)

denotes the field correlator per unit space-time rapidity as produced in the last step of the

evolution,

γ̄Y (x1,x2) ≡ x−M γ̄(±x−M ,x1,x2) . (3.5)

Equation (3.4) makes it manifest that the momentum rapidity and the space-time rapidity

are identified with each other by the high-energy evolution. In order to solve eq. (3.4), one

also needs the generalization of eq. (3.5) to intermediate values y < Y for the space-time

rapidity, that is

γ̄y(x1,x2) ≡ |x−| γ̄(x−,x1,x2) , with y ≡ Y0 + ln
|x−|
x−0

. (3.6)

Equation (3.4) should be viewed as a mean field approximation to the JIMWLK equa-

tion (2.1). It shows the same ‘left-right’ symmetry as the original equation, cf. eq. (2.24),

and hence it is consistent with the mirror symmetry discussed in section 2.3. Clearly, this

would not be the case if, instead of the symmetric Gaussian (3.1), one would consider an

asymmetric one, say with support at 0 ≤ x− ≤ x−M (Y ), as in the previous literature [36–38]:

the corresponding evolution equation would contain only the ‘left’ functional derivatives

— i.e., only the first term inside the brackets in eq. (3.4).

To justify the Gaussian Ansatz (3.1) for the CGC weight function, we shall shortly

compare the associated evolution equation (3.4) to the actual JIMWLK equation, in dif-

ferent kinematical regimes. In this process, we shall deduce piecewise approximations for

the kernel γ̄Y (x1,x2), valid at high (k⊥ ≫ Qs(Y )) and low (k⊥ ≪ Qs(Y )) momenta,

respectively.

3.2 The McLerran-Venugopalan model

Before we turn to the JIMWLK evolution, let us briefly discuss the McLerran-Venugopalan

(MV) model [29, 30] that we shall take as our initial condition at rapidity Y0. Besides

providing the initial conditions, this model (and its ad-hoc extrapolation towards high-

energy) will serve as a baseline of comparison for the mean-field results that we shall later

obtain. Its discussion will also give us an opportunity to clarify some subtle aspects of the

Gaussian approximation, like the gauge artifacts in the ‘α-representation’, cf. eq. (3.1).

In the MV model one assumes that the color charges in the nucleus are uncorrelated

valence quarks. Accordingly the distribution of the color charge density ρa(x−,x) is a

Gaussian with a kernel which is local in the transverse plane:

WY0 [ρ] = NY0 exp

[
−1

2

∫ x−

0

−x−

0

dx−
∫

x

ρa(x−,x)ρa(x−,x)

λ(x−,x)

]
δY0 [ρ] , (3.7)

where of course λ(−x−,x) = λ(x−,x). eq. (3.7) implies:

〈ρa(x−1 ,x1)ρb(x
−
2 ,x2)〉Y = δabΘ

(
x−0 − |x−1 |

)
δ(x−1 − x−2 ) δx1x2 λ(x

−
1 ,x1) . (3.8)
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The quantity λ(x−,x) has the meaning of color charge squared per unit transverse area

per unit longitudinal distance. In general the nucleus is assumed to be homogeneous in the

transverse plane, i.e. the kernel in eq. (3.7) is taken to be independent of x. Under that

assumption, the calculation of expectation values in the MV model is not sensitive to the

detailed dependence of the kernel upon x−, but only to its integral

µ2 ≡
∫ x−

0

−x−

0

dx−λ(x−) = 2

∫ Y0

−∞
dy λy =

g2A

2πR2
A

, (3.9)

which physically represents the color charge squared per unit area. In the above equation,

the quantity λy ≡ |x−|λ(x−) (the strength of the charge correlator per unit space-time

rapidity) has been defined by analogy with eq. (3.6). The last equality follows after count-

ing the color charges of the valence quarks within a nucleus with atomic number A and

transverse area πR2
A (see e.g. [40]). The fact that it is only the integrated quantity (3.9)

which matters arises from the fact that, under the present assumptions, the charge corre-

lator (3.8) is separable as a function of x− and the transverse coordinates. We shall return

to this issue in sections 4.2 and 4.3.

Equation (3.7) is gauge invariant, but in order to make contact with the α-

representation that we use throughout this paper, we shall henceforward consider it within

the class of gauges where the target field is of the form Aµ
a = δµ+αa. Then αa(x

−,x)

is related to the color charge density ρa(x
−,x) via the 2-dimensional Coulomb equation:

−∇2
⊥αa = ρa. So, for a homogeneous target, eq. (3.8) implies the following expression

for the 2-point function for the color field, in transverse momentum space (we denote

r = x1 − x2 and k⊥ = |k|):

γ̄y(k) ≡
∫

d2r eik·r γ̄y(r) =
λy

k4⊥
for y ≤ Y0 . (3.10)

Here and from now on, we prefer to work with the expressions of the various correlators per

unit space-time rapidity, cf. eq. (3.6), since these are the expressions which most directly

enter the mean-field evolution equations like (3.4).

Equation (3.10) raises a potential problem: the Fourier transform of this expression

back to the transverse coordinate space is not well defined, as it involves a (quadratic) in-

frared divergence. This problem reflects the fact that, by itself, the field αa(x
−,x) is not in-

variant under the residual gauge transformations which preserve the structure Aµ
a = δµ+αa

for the target field. The infinitesimal version of such a transformation reads αa(x
−,x) →

αa(x
−,x)+ ∂+ωa(x

−), with ωa(x
−) an arbitrary function [42]; so, clearly, the color charge

density ρa(x
−,x) is invariant under this transformation. Strictly speaking, the general

weight function WY (and, in particular, its Gaussian approximation, eq. (3.1)) should

be written as a functional of ρ, to make gauge symmetry manifest. On the other hand,

observables like scattering amplitudes are built with Wilson lines, which are path-ordered

exponentials of α. Taken separately, one Wilson line is not gauge invariant (rather, it trans-

forms via color rotations [42]), but the physically relevant operators, which involve a prod-

uct of such lines, cf. eq. (2.9), are invariant. Whenever computing the expectation value of
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such a gauge-invariant operator, there is no problem with using the weight function in the

α-representation, as given in eq. (3.1): all the gauge artifacts cancel out in the final result.

As an example, consider the calculation of the dipole S-matrix within the MV model.

The corresponding result is well known and reads (see also section 4.2)

〈Ŝx1x2〉Y0 = e−ΓY0
(x1,x2) (3.11)

where we have assumed the MV model to apply at all the rapidities Y ≤ Y0 and we defined

ΓY0(x1,x2) = g2CF

∫ Y0

−∞
dy [γ̄y(x1,x1) + γ̄y(x2,x2)− 2γ̄y(x1,x2)] , (3.12)

with CF = (N2
c − 1)/2Nc. eq. (3.12) involves only the following linear combination of the

target field correlators

γy(x1,x2) ≡ −γ̄y(x1,x2) +
1

2

[
γ̄y(x1,x1) + γ̄y(x2,x2)

]
=

∫
d2k

(2π)2
λy

k4⊥

[
1− eik·(x1−x2)

]
.

(3.13)

which is gauge-invariant, since under a residual gauge transformation the target field

αa(x−,x) changes by a x-independent quantity. The sign in the r.h.s. of eq. (3.13) is such

that γy(x1,x2) be positive-semidefinite. The last equality in eq. (3.13), which involves the

color charge correlator λy, illustrates the fact that the infrared divergences due to gauge

artifacts cancel out in the linear combination (3.13). Strictly speaking, the above integral

over k still has a logarithmic infrared divergence, but this is milder than the quadratic

divergence appearing in the Fourier transform of γ̄y(k) in eq. (3.10). The remaining diver-

gence is not a gauge artifact anymore, but a ‘physical’ singularity of this model: it reflects

the lack of correlations among the color sources. After taking into account the high-energy

evolution, transverse correlations get built which screen out this divergence, as we shall

shortly see. For completeness, let us estimate the final integral in eq. (3.12): introducing an

infrared cutoff Λ to regularize the remaining infrared divergence and writing r = |x1−x2|,
one finds

ΓY0(r) = g2CF
g2A

2πR2
A

∫
d2k

(2π)2
1− eik·r

k4⊥
≃ r2Q2

0

4
ln

1

r2Λ2
, (3.14)

where Q2
0 ≡ 2α2

sCFA/R
2
A is essentially the nuclear saturation scale5 (as probed by a quark-

antiquark dipole) at the initial rapidity Y0. Although obtained within the MV model,

the above results are generic in the following sense: all the gauge-invariant observables

computed in the Gaussian approximation involve the kernel γ̄y(x1,x1) of the Gaussian (the

correlator of the target color field) only via the linear combination shown in eq. (3.13). So,

in practice, there is no problem with using the α-representation, as shown in eq. (3.1).

Let us conclude this subsection with a remark on the calculation of expectation values

within the MV model. The similarity between the respective weight function, eq. (3.7),

and the Gaussian approximation to the JIMWLK evolution, eq. (3.1), makes it clear that

one can consider the MV model as the result of a fictitious ‘evolution’ in which the target

5More precisely, Qs(Y0) is defined by the condition ΓY0
(r = 2/Qs(Y0)) ∼ O(1).
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charge distribution is built in layers of x−, from x− = 0 up to |x−| = x−0 . Specifically, let

WX− [ρ] denote the generalization of eq. (3.7) in which x−0 is replaced by X− and assume

the nucleus to be homogeneous in the transverse plane. Then eq. (3.7) is the solution to

the following, functional, evolution equation (compare to eq. (3.4))

∂WX− [ρ]

∂X−
=

1

2
λX−

∫

uv

(
δ

δρaLu

δ

δρaLv
+

δ

δρaRu

δ

δρaRv

)
WX− [ρ] , (3.15)

integrated from X− = 0 up to X− = x−0 . In this equation, ρaL and ρaR refer to the color

charge densities at x− = X− and x− = −X−, respectively. When applied to the evolution

of the Wilson-line correlations, eq. (3.15) amounts to constructing the Wilson lines via

symmetric iterations, i.e. via infinitesimal color precessions which proceed simultaneously

‘on the left’ and ‘on the right’, as shown in eq. (2.29). However, within the context of the

MV model, this symmetric iteration is merely a choice of a discretization prescription and

any other choice is equally good. As a matter of fact, the common choice in the literature

in this context (see e.g. [3, 8, 31, 32]) is to perform asymmetric iterations ‘on the left’ :

V †
n (x) → V †

n+1(x) = exp[igǫαn+1(x)]V
†
n (x), (3.16)

where this time n refers to a discretization of the x− axis. This procedure is tantamount

to solving the following evolution equation

∂WX− [ρ]

∂X−
=

1

2
λX−

∫

uv

δ

δρaLu

δ

δρaLv
WX− [ρ] , (3.17)

from X− = −x−0 up to X− = x−0 . In practice, one often takes x−0 → ∞, since the

results are anyway insensitive to the actual value of x−0 , but only depend upon the integral∫
dX−λ(X−).

The above discussion sheds more light on the role of the ‘left-right’ symmetry in the

evolution equations. So long as the CGC weight function is given (like in the MV model)

and the associated evolution equations are merely used as a convenient device to compute

expectation values, the symmetric discretization in eq. (2.29) is not compulsory and it might

not even be the most convenient one in practice. However, for the JIMWLK equation and

any (mean field) approximation to it, the symmetric iteration is the only one to be correct,

since this is how the target field distribution gets actually built via quantum evolution:

the ‘outer’ layers (those located at larger values of |x−|) are constructed after the ‘inner’

ones (those at smaller |x−|), and the new correlations built in one step depend upon the

color field produced in all the previous steps. Hence, it would make no sense to consider

an asymmetric evolution, like eq. (3.17), since this would violate causality in the domain

of negative x−.

3.3 Weak-scattering regime: the BFKL dynamics

In what follows, we shall study the JIMWLK evolution in two limiting regimes — large

transverse momenta k⊥ ≫ Qs(Y ) in this section and relatively small momenta k⊥ ≪ Qs(Y )

in the next subsection — with the purpose of showing that, in both regimes, the evolution
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is consistent with a mean field approximation of the type shown in eq. (3.4). We recall that

Qs(Y ) is the saturation momentum in the target (in a frame in which the target carries most

of the total rapidity separation Y ) and it increases with Y very fast. For a multi-point cor-

relation function like the quadrupole (2.8), the statement that the ‘transverse momenta are

much larger than Qs’ means that all the transverse separations rij ≡ |xi−xj | between the

external points are much smaller than 1/Qs(Y ). Similarly, by ‘momenta much smaller than

Qs’, we mean that rij ≫ 1/Qs(Y ) for any pair (xi,xj) of external points. Very asymmetric

configurations, where some of the distances rij are much larger than 1/Qs(Y ) while the

others are much smaller, are strictly speaking not covered by the present analysis and must

be separately studied. We shall discuss some examples of that kind in section 4.4 below.

For high transverse momenta k⊥ ≫ Qs(Y ), the gluon density in the target is low,

meaning that the corresponding color field is weak: g
∫
dx−α ≪ 1. It is then possible to

expand the Wilson lines to lowest non-trivial order in the field in their exponent, within

both the JIMWLK Hamiltonian and the operators defining the observables. For an opera-

tor like the dipole S-matrix eq. (2.7), we need to push the expansion in gα up to the second

order, since the linear terms vanish after averaging. Introducing the dipole T -matrix op-

erator T̂x1x2 ≡ 1− Ŝx1x2 , whose expectation value represents the corresponding scattering

amplitude, this expansion yields

〈T̂x1x2〉Y ≃ g2

4Nc
〈(αa

x1
− αa

x2
)2〉Y with αa

x ≡
∫

dx−αa(x
−,x) . (3.18)

The weak scattering regime corresponds to 〈T̂ 〉Y ≪ 1. Note that eq. (3.18) involves only the

linear combination (3.13) of the target field correlators, in agreement with the discussion

in section 3.2. The similar expansion for the quadrupole S-matrix, eq. (2.8), yields

1− 〈Q̂x1x2x3x4〉Y ≃ 〈T̂x1x2 − T̂x1x3 + T̂x1x4 + T̂x2x3 − T̂x2x4 + T̂x3x4〉Y , (3.19)

where it is understood that 〈T̂ 〉Y is evaluated according to eq. (3.18). More generally,

in this dilute regime, all the n-point functions of the type shown in eqs. (2.9) or (2.10)

reduce to linear combinations of dipole amplitudes. This already shows that a Gaussian

approximation for the CGC weight function should be indeed possible, to the accuracy

of interest. To identify this approximation, let us also consider the weak-field limit of

the JIMWLK Hamiltonian. Its obtention is facilitated by observing that eq. (2.2) can be

rewritten as

1 + Ṽ †
uṼv − Ṽ †

uṼz − Ṽ †
z Ṽv =

(
1− Ṽ †

uṼz

) (
1− Ṽ †

z Ṽv

)
. (3.20)

The leading order terms in the dilute regime are then obtained by expanding the Wilson

lines within each of the two parentheses above to linear order in gα. (This amounts to an

expansion of the original structure in the l.h.s. of eq. (3.20) up to quadratic order.) For

instance,

1− Ṽ †
uṼz ≃ −ig

(
αa
u − αa

z

)
T a , (3.21)

with αa
u as defined in eq. (3.18). After also using (T a)bc = ifabc, one finds H ≃ HBFKL

with

HBFKL = − g2

16π3

∫

uvz

Muvz

(
αa
u − αa

z

)(
αb
z − αb

v

)
facff bfd δ

δαc
u

δ

δαd
v

. (3.22)
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This Hamiltonian is supposed to act on operators which are themselves evaluated in the

weak-scattering regime and hence are quadratic functions of the field αa
x, as illustrated

in (3.18) and (3.19). Clearly, the only evolution equation of interest for us here is that

obeyed by the dipole scattering amplitude (3.18). This is readily obtained as

∂〈T̂x1x2〉Y
∂Y

=
ᾱ

2π

∫

z

Mx1x2z

〈
T̂x1z + T̂zx2 − T̂x1x2

〉
Y
, (3.23)

and is recognized as the BFKL equation [46–48], that is, the equation obtained after

linearizing eq. (2.16) with respect to 〈T̂ 〉Y . By using its solution, one can compute any

other n-point function of the Wilson lines, like eq. (3.19), in this dilute regime.

We now construct the Gaussian approximation which reproduces the BFKL equation.

To that aim, we shall compare the mean-field equation for 〈T̂x1x2〉Y generated by eq. (3.4)

with eq. (3.23) and thus deduce an approximate expression for γ̄Y (u,v) valid in this linear

regime. Notice that the left and right functional derivatives yield identical results when

acting on the field αa
x which is integrated over x−. Hence, eqs. (3.4) and (3.18) imply

∂〈T̂x1x2〉Y
∂Y

∣∣∣∣
MFA

=
g2

4Nc

∫

uv

γ̄Y (u,v)
〈 δ

δαb
u

δ

δαb
v

(αa
x1

− αa
x2
)2
〉

Y

=
g2

4Nc
2δaa [γ̄Y (x1,x1) + γ̄Y (x2,x2)− 2γ̄Y (x1,x2)]

= g2
N2

c − 1

Nc
γY (x1,x2) , (3.24)

with γY (x1,x2) defined as in eq. (3.13). The last equation can be integrated to yield

〈T̂x1x2〉Y
∣∣∣
MFA

= 2g2CF fY (x1,x2) with fY (x1,x2) ≡
∫ Y

−∞
dy γy(x1,x2) . (3.25)

It is easy to check that the same expression for 〈T̂ 〉Y would be obtained by directly evalu-

ating the expectation value in eq. (3.18) with the help of eq. (3.3). But its above derivation

via the mean-field equation of motion has the merit to emphasize that the evolution equa-

tions for gauge-invariant observables generated by the Gaussian approximation involve the

well-behaved kernel γY (x1,x2) in spite of the fact that the corresponding functional equa-

tion (3.4) features the (generally ill defined) kernel γ̄Y (x1,x2). This property is generic: it

holds beyond the present, BFKL, approximation. Thus, for all practical purposes one can

replace γ̄Y (u,v) → −γY (u,v) within eq. (3.4). This replacement works in the same way

as that of the original kernel in the JIMWLK equation [17, 19, 20] by the dipole kernel

in eq. (2.2): the new kernel is to be used only when acting on gauge-invariant observables

and it has the property to vanish at u = v.

Returning to the mean-field expression (3.25) for 〈T̂ 〉Y , this must be consistent with

the BFKL equation (3.23). This is clearly the case provided the function fY (x1,x2) itself

satisfies the BFKL equation:

∂fY (x1,x2)

∂Y
=

ᾱ

2π

∫

z

Mx1x2z [fY (x1, z) + fY (z,x2)− fY (x1,x2)] . (3.26)
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The initial conditions for the above equations can be taken from the MV model, which

yields (for r ≪ 1/Q0): 〈T̂ (r)〉Y0 = 2g2CF fY0(r) = ΓY0(r), with ΓY0 given in eq. (3.14).

The solution to eq. (3.26) is by now well understood. Here we will just remind that

the BFKL evolution introduces transverse correlations between the ‘color sources’ (radiated

gluons) which ensure that the solution fY (x1,x2) becomes infrared finite after a rapidity

evolution Y −Y0 ∼ 1/ᾱ. In particular, in the window for ‘extended geometric scaling’ [49–

51], which holds for transverse momenta relatively close to (but still larger than) the

saturation momentum Qs(Y ), one has6 λY (k) = k4⊥γY (k) ∝ k
2(1−γs)
⊥ with γs ≈ 0.63 (the

‘BFKL anomalous dimension at saturation’). Then, clearly, the integral over k in eq. (3.13)

is well defined when computed within the BFKL approximation.

To summarize, the mean-field equation (3.4), where it is understood that the kernel

can be replaced as γ̄Y → −γY with the function γY (u,v) determined by eq. (3.26), properly

encodes the BFKL evolution of the dipole amplitude in the weak scattering regime. This

conclusion holds for any value of the number of colors Nc and it extends to all the n-point

functions like (2.9) and (2.10) which, in this regime, reduce to linear combinations of dipole

amplitudes.

Before concluding this section, let us recall that there are also other aspects of the

BFKL dynamics, which cannot be encoded into a Gaussian weight function. They refer

to operators more complicated than those in eq. (2.9), which already at weak scattering

involve more than two gluon exchanges; that is, to lowest order in the weak field expan-

sion, they involve polynomials in α of a degree higher than two. (Such operators can

be obtained e.g. by subtracting the dipolar contributions to the Wilson-line operators in

eqs. (2.9)–(2.10).) An example of that type is the ‘odderon’ operator, which describes

C-odd exchanges and which in perturbation theory starts with three gluon exchanges. The

corresponding evolution equation is correctly encoded (to leading logarithmic accuracy) in

the JIMWLK equation [42] — in particular, its low-density limit, known as the ‘BKP equa-

tion’ [52–54], is generated by the weak-field limit (3.22) of the JIMWLK Hamiltonian [42]

— but this description goes beyond the purpose of a Gaussian approximation, which by

construction can encode only the 2-point function of the α field. For instance, to describe

odderon effects in the initial conditions, one needs an extension of the MV model allowing

for a non-trivial 3-point function [55].

What is however remarkable about the Gaussian approximation that we pursue here

is its capacity to encode non-trivial correlations among n Wilson lines with arbitrary n in

the strong scattering regime, where the linear relation between the n-point functions and

the 2-point function does not hold anymore. This will be discussed in the next subsection.

3.4 Strong-scattering regime: the dominance of the ‘virtual’ terms

For relatively low transverse momenta k⊥ . Qs(Y ), the gluon occupation numbers in the

target wavefunction saturate at a large value of order 1/αs, meaning that g
∫
dx−α ∼ O(1).

This in turn implies that the scattering is strong for projectiles with transverse sizes r &

6Notice that k4
⊥γY (k) = k4

⊥γ̄Y (k) since in momentum space the difference between γY (k) and γ̄Y (k) is

proportional to δ(2)(k).
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1/Qs. For instance, the dipole scattering amplitude 〈T̂x1x2〉Y becomes of order one when

|x1 − x2| & 1/Qs. Then eq. (3.19) implies that, for generic configurations at least, the

quadrupole scattering becomes strong when at least one (which necessarily means at least

three) of the six transverse distances rij = |xi − xj | is of order 1/Qs, or larger. Similar

considerations apply to the higher-point correlations. In this regime, the Wilson lines

cannot be expanded out anymore. Rather, they resum multiple scattering to all orders in

the eikonal approximation.

To correctly describe the high-energy evolution in the presence of gluon saturation and

multiple scattering, it is of course essential to keep the non-linear terms in the Balitsky-

JIMWLK equations, so like 〈ŜŜ〉Y in the equation (2.16) for the dipole S-matrix and

〈ŜQ̂〉Y in the r.h.s. of eq. (2.17) for the quadrupole. In fact, these are precisely the terms

responsible for the approach towards saturation in the gluon distribution and towards uni-

tarity in the scattering of the projectile. Accordingly, in the transition regime towards

saturation/unitarity (i.e. for k⊥ ∼ Qs(Y )), one has to deal with the whole, infinite, hierar-

chy of coupled evolution equations: no simple mean-field approximation (like a Gaussian)

is possible in that regime. However, the situation drastically simplifies deeply at saturation

(k⊥ ≪ Qs(Y )), where the only role of the non-linear terms in the equation is to forbid

further evolution — or, more correctly, to limit the transverse phase-space for the high-

energy evolution: gluons with soft momenta k⊥ ≪ Qs(Y ) can (almost) not be emitted

anymore, meaning that domains separated by transverse distances r ≫ 1/Qs(Y ) evolve

independently from each other. This leads to considerable simplifications in the Balitsky-

JIMWLK equations, which can be most directly recognized by inspection of the projectile

evolution.

For multi-partonic projectiles which are such that all the interparticle separations rij
are much larger than 1/Qs(Y ), the associated S-matrices are very small (close to zero)

— the more so the larger the number of partons. Roughly speaking, and up to subtleties

related to the 1/N2
c corrections to which we shall later return, a 2-dipole projectile scatters

more strongly than a single-dipole one, 〈ŜŜ〉Y ≪ 〈Ŝ〉Y , a projectile made with a dipole

plus a quadrupole scatters more strongly than the quadrupole alone, 〈ŜQ̂〉Y ≪ 〈Q̂〉Y , etc.
When this happens, the ‘virtual’ terms dominate the evolution, whereas the ‘real’ terms

can be simply replaced with a lower cutoff ∼ 1/Qs(Y ) on the transverse separation |z−xi|
between the newly emitted gluon at z and any of the preexisting partons at xi. Once this

is done, the resulting evolution equations are linear and hence admit a Gaussian solution.

This is of course related to our previous observation in section 2.3 that the only effect of

the ‘non-linear terms’ (Wilson lines) within Hvirt is to transform ‘left’ color precessions

into ‘right’ ones and thus ensure the symmetric expansion of the target field distribution

in x−. This also shows that, in this high density regime, where the Wilson lines cannot be

expanded anymore and ‘left’ and ‘right’ functional derivatives have different mathematical

consequences, it is essential to keep trace of the ‘mirror’ symmetry of the evolution, by

using a symmetric Gaussian, as shown in (3.1).

To render these considerations more precise and construct the corresponding Gaussian

approximation, we shall develop our mathematical arguments in two steps: (i) at large Nc,

and (ii) at finite Nc.
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(i) Large Nc: within the context of the large–Nc approximation, the prominence of the

‘virtual’ terms in the approach towards the black disk limit is quite obvious and has

been pointed out at several places in the literature [12, 39, 56, 57]. Specifically, the

‘real’ terms which survive at large Nc involve double-trace operators, which can be

factorized to the accuracy of interest: 〈ŜŜ〉Y ≃ 〈Ŝ〉Y 〈Ŝ〉Y , 〈ŜQ̂〉Y ≃ 〈Ŝ〉Y 〈Q̂〉Y , etc.
Then we can write e.g.

〈Ŝx1z〉Y 〈Ŝzx2〉Y ≪ 〈Ŝx1x2〉Y when |z − xi| ≫ 1/Qs(Y ) . (3.27)

Now, in equations like (2.16) or (2.17), the transverse position z of the emitted gluon

is integrated over, so it can become close to one of the external points xi, in which

case eq. (3.27) does not hold anymore. However, in the high density regime under

consideration, such special configurations are disfavoured by the phase-space for the

transverse integration. Namely, assuming |xi−xj | ≫ 1/Qs(Y ) for all the pairs (i, j),

one can check that the integrals over z receive their dominant contributions from

points relatively far apart from all the external points, which satisfy

1/Qs ≪ |z − xi| ≪ |xi − xj |. (3.28)

Indeed, the contribution of such a range is enhanced by the large transverse logarithm

1

2π

∫

z

Mxixjz ≃
∫ |xi−xj |

2

1/Q2
s

dz2

z2
= ln

[
(xi − xj)

2Q2
s

]
. (3.29)

Hence, to leading logarithmic accuracy in the sense of eq. (3.29), one can indeed

neglect the ‘real’ terms in the Balitsky-JIMWLK equations at largeNc, as anticipated.

(ii) Finite Nc: the physical argument at finite Nc is the same as at large Nc except that,

now, one has to take into account the fact that the evolution described by the ‘real’

terms truly corresponds to the emission of a gluon, and not just to the splitting of,

say, one dipole into two dipoles. When this new gluon is sufficiently soft, in the sense

that |z − xi| & 1/Qs(Y ) for any i, its emission leads to a partonic system with a

wider distribution of color charge in the transverse plane, which therefore interacts

stronger with the target than the original projectile. But in order to rigorously justify

this, one needs to actually estimate the S-matrix for, say, a quark-antiquark-gluon

(qq̄g) system deeply at saturation and show that this is indeed much smaller than the

S-matrix of the dipole (qq̄). To appreciate how subtle this is, let us recall that, when

rewriting the ‘real’ terms in terms of Wilson lines in the fundamental representation

(as customary in the Balitsky-JIMWLK equations), one generates single-trace pieces

proportional to 1/N2
c , which by themselves count on the same footing as the ‘virtual’

terms near the unitarity limit. For instance, the contribution of the ‘real’ terms to

the dipole equation involves the following expectation value (cf. the second line in

eq. (2.13)) 〈
Ŝx1zŜzx2 −

1

N2
c

Ŝx1x2

〉

Y
, (3.30)
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where one may naively think that the second, single-trace, term dominates over the

first one when all the transverse separations are much larger than 1/Qs(Y ). As

another example, we show here some ‘real’ terms from the evolution equation (2.17)

for the quadrupole, namely those arising when acting with Hreal on the two quarks

at x1 and x3:

〈
HrealQ̂x1x2x3x4

〉
Y

= − g2

8π3Nc

∫

z

Mx1x3z

〈
Ṽ ab
z

[
tr(V †

x1
taVx2t

bV †
x3
Vx4) + tr(tbV †

x1
Vx2V

†
x3
taVx4)

]〉
Y
,

= − ᾱ

4π

∫

z

Mx1x3z

〈
Ŝzx2Q̂x1zx3x4 + Ŝzx4Q̂x1x2x3z − 2

N2
c

Q̂x1x2x3x4

〉

Y
, (3.31)

where the second line follows from the first one after using the Fierz identity (2.15).

Once again, one may think that the last term in eq. (3.31), proportional to

(1/N2
c )〈Q̂〉Y , is the dominant term for large transverse separations ≫ 1/Qs(Y ) (and

for finite Nc). If that was indeed the case, there would be a mixing between ‘real’

and ‘virtual’ terms deeply at saturation, which would prevent a Gaussian approxi-

mation (since the latter could not accommodate the ‘real’ terms beyond the BFKL

approximation).

The situation becomes even more confusing if one recalls that, in the equations obeyed

by the single-trace observables, the terms subleading at large Nc precisely cancel between

‘real’ and ‘virtual’ contributions. In view of this, one may be tempted to argue that the

finite–Nc corrections are totally irrelevant. But that would be wrong, since there is no

similar cancelation in the equations obeyed by the multi-trace operators, like 〈ŜŜ〉Y or

〈ŜQ̂〉Y .
What ‘saves’ the Gaussian approximation, is the fact that, in spite of appearance,

the single-trace components in equations like (3.30) or (3.31) do not dominate over the

respective double-trace ones, but merely subtract fake ‘single-trace contributions’ from the

latter, that have been artificially introduced via the Fierz identity. That is, the expression in

the first line of eq. (2.13), which involves an adjoint Wilson line and describes a qq̄g system,

vanishes very fast in the approach towards the black disk limit, where it is suppressed

with respect to the corresponding ‘virtual’ term 〈Ŝx1x2〉Y . But this is not the case for

the 2-dipole S-matrix in the second line of eq. (2.13), which in that regime approaches

to (1/N2
c )〈Ŝx1x2〉Y . A similar discussion refers to eq. (3.31): deeply at saturation, the

observable in the first line, which describes a qq̄qq̄g partonic system, is suppressed compared

to the respective ‘virtual’ terms, that is, the quadrupole and the pair of dipoles.

In order to demonstrate this while dealing with an infinite hierarchy, we shall provide

a self-consistent argument. That is, we start by assuming that the JIMWLK evolution

deeply at saturation is controlled by Hvirt alone and we prove that, under this assumption,

the ‘real’ terms in eq. (3.30) and eq. (3.31) vanish exponentially faster than the respective

‘virtual’ terms in the vicinity of the unitarity limit. We shall give the details of the proof

for the dipole evolution, i.e. for the operator in eq. (3.30), and then briefly discuss its

generalization to the quadrupole and higher n-point functions. In this context, by ‘Hvirt’
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we mean, of course, the first two terms in the JIMWLK Hamiltonian (2.2) together with

the phase-space restriction |z − xi| ≫ 1/Qs(Y ) as introduced by the ‘real’ terms. That is,

we work in the leading-logarithmic approximation in eqs. (3.28)–(3.29), which enables us

to write

Hvirt ≃ − 1

8π2

∫

uv

ln
[
(u− v)2Q2

s(Y )
] (

1 + Ṽ †
uṼv

)ab δ

δαa
u

δ

δαb
v

, (3.32)

to the accuracy of interest.

So, let us calculate the action of Hvirt on the combination of the operators appearing

in eq. (3.30). This action on the second term has been already computed in eq. (2.12), that

we here rewrite for convenience as

− 1

N2
c

Hvirt Ŝx1x2 =
ᾱ

2πN2
c

(
1− 1

N2
c

)∫

w

Mx1x2wŜx1x2 , (3.33)

with the integral over w understood in the sense of eq. (3.29). Now, when both derivatives

act on the same (either the first or the second) dipole of the first term in eq. (3.30), we get

the following, ‘diagonal’, contribution

Hvirt Ŝx1zŜzx2

∣∣
diag

= − ᾱ

2π

(
1− 1

N2
c

)∫

w

(Mx1zw +Mx2zw)Ŝx1zŜzx2 , (3.34)

and when they act on different dipoles we find the cross term

Hvirt Ŝx1zŜzx2

∣∣
cross

= − ᾱ

2πN2
c

∫

w

(Mx1zw+Mx2zw−Mx1x2w)(Ŝx1zŜzx2−Ŝx1x2). (3.35)

Putting everything together we arrive at

Hvirt

(
Ŝx1zŜzx2 −

1

N2
c

Ŝx1x2

)
=

− ᾱ

2π

∫

w

(
Mx1zw +Mx2zw − 1

N2
c

Mx1x2w

)(
Ŝx1zŜzx2 −

1

N2
c

Ŝx1x2

)
, (3.36)

where it is crucial to notice that the operator of interest has been reconstructed in the

r.h.s. of the equation. It should be clear from the above derivation that this would have

not happened without the subtraction of the 1/N2
c -suppressed dipole. By assumption, the

above equation describes the approach towards unitarity of the ‘real’ piece in the evolution

equation (2.16) for the dipole S-matrix. This should be compared to eq. (2.12), which

describes the corresponding approach for the ‘virtual’ piece (the dipole itself). Clearly,

the kernel in eq. (3.36) is ‘twice as large’ than that in eq. (2.12), showing that, deeply at

saturation, the expectation value of the ‘real’ operator in eq. (3.30) vanish exponentially

faster than the ‘virtual’ term ∝ 〈Ŝx1x2〉Y . Hence, the latter dominates in the evolution

equation and in this regime, as anticipated.

This self-consistent argument can be generalized to higher-point correlators, as we now

show for the operator

Ŝx1zQ̂zx2x3x4 −
1

N2
c

Q̂x1x2x3x4 , (3.37)
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which appears in eq. (3.31) and counts for the evolution of the quadrupole. Acting with

Hvirt, we see that the only new element appearing, when comparing to eq. (3.36), is operator

mixing. Indeed, one finds that we also need to consider the operators

Ŝx1zŜzx2 Ŝx3x4 −
1

N2
c

Ŝx1x2Ŝx3x4 , (3.38)

and

Ŝ
(6)
zx2x1zx3x4 − Ŝx1x2Ŝx3x4 , (3.39)

plus permutations of all the operators appearing in eqs. (3.37), (3.38) and (3.39). Without

going into too much detail, one understands that the action of Hvirt on the above operators

leads to

Hvirt




Ŝx1zQ̂zx2x3x4 −
1

N2
c

Q̂x1x2x3x4

Ŝx1zŜzx2Ŝx3x4 −
1

N2
c

Ŝx1x2Ŝx3x4

Ŝ
(6)
zx2x1zx3x4 − Ŝx1x2Ŝx3x4

...




=

[
M · · ·
...

. . .

]




Ŝx1zQ̂zx2x3x4 −
1

N2
c

Q̂x1x2x3x4

Ŝx1zŜzx2 Ŝx3x4 −
1

N2
c

Ŝx1x2Ŝx3x4

Ŝ
(6)
zx2x1zx3x4 − Ŝx1x2Ŝx3x4

...




,

(3.40)

where the elements of the 3×3 matrix M are proportional to −ᾱ/2π times an integral over

w of linear combinations of the dipole kernel. The counting is such that the integrand in

the diagonal elements is the sum of three dipole kernels which enter all with a plus sign,

plus terms proportional to 1/N2
c (in analogy with eq. (3.36)). Furthermore, the integrand

in the non-diagonal elements is the sum of dipole kernels with equal number of plus and

minus signs, plus again terms proportional to 1/N2
c . Clearly, the diagonal components are

those which control the approach towards the black disk limit and they are larger than

those which control the corresponding evolution for the ‘virtual’ terms in eq. (2.17), that

is 〈Q̂〉Y and 〈ŜŜ〉Y .
Incidentally, the above argument also shows that the two operators in eqs. (3.38)

and (3.39) vanish faster than the quadrupole and the 2-dipole system in the approach

towards unitarity. This is interesting since these are precisely the ‘real’ terms in the evolu-

tion equation for 〈Ŝx1x2Ŝx3x4〉Y , whereas 〈Q̂〉Y and 〈ŜŜ〉Y are the corresponding ‘virtual’

terms. So, we have also demonstrated the property of interest (the dominance of the ‘vir-

tual’ terms deeply at saturation) for the evolution of a system of two dipoles with arbitrary

coordinates. We are confident that a similar proof applies to the higher-point (single-trace

or multi-trace) correlation functions.

It is furthermore instructive to check these arguments via explicit calculations within

the Gaussian approximation (3.1). Via methods to be described later, this yields e.g. [37]

〈
Ŝx1x3Ŝx3x2 −

1

N2
c

Ŝx1x2

〉

Y
=

N2
c − 1

N2
c

[
〈Ŝx1x3〉Y 〈Ŝx3x2〉Y

〈Ŝx1x2〉Y

] 1
(N2

c−1)

〈Ŝx1x3〉Y 〈Ŝx3x2〉Y ,

(3.41)

where we have assumed that 〈Ŝxixj
〉 and 〈Ŝx1x3Ŝx3x2〉 are equal to 1 as an initial condition,

to simplify writing. This formula makes it clear that the operator in the l.h.s. vanishes,
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roughly, as a ‘dipole squared’ in the approach towards the unitarity limit. A corresponding

argument for the operator (3.37) which enters the evolution of the quadrupole will be given

in section 4.4.

We thus conclude that the JIMWLK evolution deeply at saturation is indeed correctly

described by the ‘virtual’ Hamiltonian in eq. (3.32). When acting on operators built with

Wilson lines, the two terms in Hvirt amount to ‘left’ and ‘right’ Lie derivatives, in the sense

of eq. (2.25). So, clearly, the Hamiltonian (3.32) is of the ‘symmetric Gaussian’ form in

eq. (3.4), with the following kernel

γY (u,v) =
1

4π2
ln
[
(u− v)2Q2

s

]
=⇒ γY (k) =

1

πk2⊥
. (3.42)

This applies for k⊥ ≪ Qs(Y ) and is recognized as the 2-dimensional Coulomb propagator.

In turn this implies that the charge-charge correlator λY (k) = k4⊥γY (k) vanishes like k2⊥
when k⊥ → 0, which is the expression of color shielding due to gluon saturation [38, 58]: the

average color charge squared vanishes when integrated over a transverse area ≫ 1/Q2
s(Y ).

Notice that in some previous versions of the mean field approximation [36, 38, 39], one

has assumed that the JIMWLK Hamiltonian takes an even simpler form in the vicinity

of the black disk limit, namely it reduces to the first term in eq. (3.32), which involves

the ‘left’ derivatives alone. That simplification was motivated [39] by a ‘random phase

approximation’, which assumed that, in the strong field regime deeply at saturation, all

the Wilson lines within the Hamiltonian are rapidly oscillating and thus average out to

zero. As shown by our present manipulations, this argument is qualitatively correct, but

only for the ‘real’ terms (the last 2 terms) in the JIMWLK Hamiltonian.

To summarize the arguments in this section, the JIMWLK evolution in the two limiting

regimes — the weak-scattering regime at low gluon density and the approach towards the

black-disk limit deeply at saturation — can be properly encoded, for any value of Nc,

into a symmetric Gaussian weight function of the type (3.1). In turn, this Gaussian is

tantamount to the functional evolution equation shown in eq. (3.4), or to the following,

mean field, Hamiltonian:

HMFA = −1

2

∫

uv

γY (u,v)
(
1 + Ṽ †

uṼv

)ab δ

δαa
u

δ

δαb
v

=
g2

2

∫

uv

γY (u,v)
(
Ja
LuJ

a
Lv + Ja

RuJ
a
Rv

)
.

(3.43)

This has the same operator structure as the ‘virtual’ piece of the JIMWLKHamiltonian, but

with a different, Y -dependent, kernel, which is essentially the 2-point function of the target

color field. This kernel interpolates between the solution to the BFKL equation (3.26) at

small transverse separations |u − v| ≪ 1/Qs(Y ) and the Coulomb propagator (3.42) at

relatively large distances |u − v| ≫ 1/Qs(Y ). Remarkably, the kernel is independent of

Nc, in agreement with the corresponding property of the ‘dipole’ kernel in the JIMWLK

Hamiltonian. (This can be checked e.g. on eq. (3.42) and on the relation (3.24) between

this kernel and the dipole amplitude at weak coupling.) Any smooth function γY (u,v)

with the correct limiting behaviors can in principle be used to define the Gaussian; indeed,

different such functions can differ from each other only in the transition region around

Qs, which is not under control within the present approximation. In practice, however, a
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proper choice for the kernel is probably essential in order to achieve a good global accuracy.

In the following section, we shall propose two such choices.

4 Evolution equations in the Gaussian approximation

In this section we shall describe two methods for constructing smooth, global, expressions

for the kernel γY (u,v), which are equivalent with each other to the accuracy of interest.

Then we shall derive the evolution equations associated with the mean field Hamilto-

nian (3.43), first for generic Nc (in section 4.2), then at large Nc (in section 4.3). As

before, we shall mostly focus on the evolution of the dipole and of the quadrupole. In the

large–Nc limit we shall recover the equations previously proposed in ref. [12]. At finite Nc,

the general equations are more complicated, but explicit solutions will be presented for

special configurations in section 4.4.

4.1 Self-consistent constructions of the kernel

Within the Gaussian approximation, it is always possible to trade the kernel γY (x1,x2) for

the dipole S-matrix 〈Ŝx1x2〉Y , for which it is easier to construct global, smooth, approx-

imations in practice. The expression of 〈Ŝx1x2〉Y in the Gaussian approximation is well

known in the literature and will be rederived, for completeness, in the next subsection.

Here it is preferable to work with the corresponding evolution equation, which reads

∂
〈
ŜR
x1x2

〉
Y

∂Y
= −2g2CR γY (x1,x2)

〈
ŜR
x1x2

〉
Y
. (4.1)

for a dipole in an arbitrary representation R of the color group. Hence, if one disposes of

a numerical solution to the JIMWLK equation, like in refs. [11, 59, 60], then one can use

the respective estimate for the dipole S-matrix, say, in the fundamental representation,

together with eq. (4.1) to deduce a corresponding estimate for the kernel.

In practice, solving the full JIMWLK evolution is quite tedious, so it is customary to

rely on its large–Nc approximation (for the dipole evolution), namely the BK equation.

This is equally good for the present purposes (including at finite Nc) since, as noticed at

the end of the previous section, the kernel γY (x1,x2) is independent of Nc. Hence, its

limiting behaviors are correctly reproduced by the large–Nc version of eq. (4.1). The latter

implies

g2Nc γY (x1,x2) = −
∂ ln

〈
ŜBK
x1x2

〉
Y

∂Y
, (4.2)

with 〈ŜBK
x1x2

〉Y denoting the solution to the BK equation with an initial condition itself

evaluated at large Nc. (This is important in order to preserve finite–Nc accuracy in the

limiting kinematical domains where eq. (4.2) is correct as it stands for any value of Nc.)

For instance, within the MV model, this is provided by eqs. (3.11)–(3.12) with CF ≃ Nc/2.

The function 〈ŜBK
x1x2

〉Y can be obtained either as an exact, numerical, solution to the BK

equation, or as an analytic approximation to it with the correct limiting behaviors.

Although correct to the accuracy of interest, the construction in eq. (4.2) may look

a bit unesthetic at a conceptual level, as it requires an input — the solution of the BK
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equation — which seems external to the Gaussian approximation. However, as we now

explain, eq. (4.2) can be also understood as a self-consistency condition internal to the mean

field approximation [37]. Specifically, let us start with the first equation in the Balitsky-

JIMWLK hierarchy, that is eq. (2.16) for the dipole, and evaluate all the expectation values

there with the Gaussian weight function (3.1), that is, by using eq. (4.1) with CR = CF

together with eq. (3.41). This leads to an equation for the kernel γY (x1,x2) which is

precisely equivalent to solving the BK equation and then computing the kernel according

to eq. (4.2) (see ref. [37] for details).

This procedure, which in ref. [37] has been dubbed ‘the Gaussian truncation’, is of

course not unique: one can similarly start with any equation in the Balitsky-JIMWLK hi-

erarchy, compute all the expectation values there with the Gaussian weight function (3.1),

and thereby transform the original equation into an equation for γY (x1,x2). A different

self-consistency condition, which in practice is not more difficult to use than eq. (4.2), has

been originally proposed in ref. [36]. It amounts to requiring the mean-field Hamilto-

nian (3.43) to coincide with the JIMWLK Hamiltonian (2.2) on the average:

1

16π3

∫

z

Muvz

〈
1 + Ṽ †

uṼv − Ṽ †
uṼz − Ṽ †

z Ṽv

〉ab
Y

=
1

2
γY (u,v)

〈
1 + Ṽ †

uṼv

〉ab
Y
. (4.3)

The average here refers, of course, to the Gaussian weight function, which implies that

both the l.h.s. and the r.h.s. in the above equation are proportional to δab. Introducing the

S-matrix for the gluonic dipole operator

ŜA
x1x2

≡ 1

N2
c − 1

Tr(Ṽ †
x1
Ṽx2) =

1

N2
c − 1

(
N2

c Ŝx1x2Ŝx2x1 − 1
)

(4.4)

which it related to the respective fermionic operator as shown in the second equality above,

and multiplying eq. (4.3) by δab, we can rewrite the latter as

γY (u,v) =
1

8π3
〈
1 + ŜA

uv

〉
Y

∫

z

Muvz

〈
1 + ŜA

uv − ŜA
uz − ŜA

zv

〉
Y
. (4.5)

This relation immediately implies γY (u,u) = 0 because of the corresponding property of

the dipole kernel Muvz. It furthermore implies that γY (u,v) is symmetric under u ↔ v,

because so is the gluonic dipole S-matrix, as obvious from its definition (4.4).

The self-consistency condition (4.5) is most conveniently written as an equation for

〈ŜA
〉
Y
: by using eq. (4.1) in the adjoint representation (CR = CA ≡ Nc), one finds

∂
〈
ŜA
x1x2

〉
Y

∂Y
=

ᾱ

π

∫

z

Mx1x2z

〈
ŜA
x1x2

〉
Y〈

1 + ŜA
x1x2

〉
Y

〈
ŜA
x1z

+ ŜA
zx2

− ŜA
x1x2

− 1
〉
Y
. (4.6)

The initial condition should be taken from the MV model applied to a gluonic dipole, that

is, eqs. (3.11)–(3.12) with CF → CA = Nc.

To summarize, by using either eq. (4.2) together with the solution to the BK equation,

or eq. (4.1) with R = A together with the solution to eq. (4.6), one obtains two global

approximations for the kernel γY (x1,x2), which can differ from each other only in the

transition region around saturation. In principle, these two approximations are equivalent
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with each other to the accuracy of interest. In practice, any (numerical) difference between

them will have an impact on the calculation of the higher n-point functions, to be described

in the remaining part of this section. It is likely that one can optimize the reliability of

this whole scheme by choosing a ‘good’ approximation for the dipole S-matrix used to

compute the kernel, like the exact, numerical, solution to the JIMWLK equation, or to the

BK equation at least.

4.2 Mean-field equations for the dipole and the quadrupole

The evolution equations associated with the mean-field Hamiltonian (3.43) are straight-

forward to obtain, by using the same techniques as for the JIMWLK Hamiltonian (2.2).

Alternatively, given that HMFA has the same operator structure as Hvirt, the mean-field

equations can be directly inferred from the corresponding Balitsky-JIMWLK equations, by

keeping only the ‘virtual’ terms in the latter and replacing everywhere the dipole kernel

according to
1

8π3

∫

z

Muvz → γY (u,v) . (4.7)

In doing that, one should be careful to restore all the ‘virtual’ terms in the Balitsky-

JIMWLK equations, including those which may have canceled against similar ‘real’ contri-

butions and hence are not manifest in the final equations (cf. the discussion in section 2.2).

Clearly, the resulting equations will inherit the relatively simple structure characteristic of

the ‘virtual’ terms. They form closed systems of equations, which connect only correlation

functions with the same number of Wilson lines (or external points) and are local in the

transverse coordinates, meaning that they do not mix different transverse configurations.

Note also that, although linear, these new equations respect unitarity by construction: the

tame of the BFKL growth by the non-linear physics of gluon saturation is already encoded

in the kernel of the Gaussian. The fact that the S-matrices for the various projectiles

approach the right limit at strong scattering is ensured by the unitarity of the Wilson lines

which appear within the respective operators.

Consider first the dipole equation. Using the substitution rule (4.7) and the respective

‘virtual’ term in eq. (2.12), one finds

∂〈Ŝx1x2〉Y
∂Y

= −2g2CF γY (x1,x2)〈Ŝx1x2〉Y . (4.8)

This is easily solved to give

〈Ŝx1x2〉Y = e−ΓY (x1,x2), ΓY (x1,x2) = 2g2CF

∫ Y

−∞
dy γy(x1,x2) , (4.9)

where it is understood that ΓY0 is given by the MV model, cf. eqs. (3.11)–(3.12). The

corresponding expressions for a color dipole
〈
ŜR
x1x2

〉
Y
in an arbitrary representation R are

obtained by replacing CF → CR in the equations above (cf. eq. (4.1)). In particular, in the

‘BK-representation’ in which the Gaussian kernel is computed according to eq. (4.2), the

dipole S-matrix in the Gaussian approximation and in a generic representation R of the
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color group is related to the solution 〈ŜBK
x1x2

〉Y to the BK equation via

ln
〈
ŜR
x1x2

〉
Y

=
2CR

Nc
ln
〈
ŜBK
x1x2

〉
Y
. (4.10)

From the discussion in section 3, one expects eq. (4.9) to have the correct limits at

both weak and strong scattering, and it is instructive to explicitly check that. At weak

scattering, one has 〈Ŝ〉Y = 1 − 〈T̂ 〉Y with 〈T̂ 〉Y ≪ 1, so in particular one can replace

〈Ŝ〉Y ≈ 1 in the r.h.s. of eq. (4.8). Then the latter reduces to eq. (3.24), with γY (x1,x2)

determined by the solution to the BFKL equation (3.26). This is indeed the expected

result. At strong scattering, the kernel takes the form of the Coulomb propagator (3.42),

in agreement with the limit |u − v| ≫ 1/Qs(Y ) of eq. (4.7) (recall eq. (3.29)). So, in

this regime, eq. (4.8) is identical to the ‘virtual’ part of the respective Balitsky-JIMWLK

equation (2.16), which is the part that controls the approach towards the black disk limit.

Let us study this approach in more detail. By using eq. (3.42) within eq. (4.9), one obtains

ΓY (x1,x2) ≃
g2CF

2π2

∫ Y

Ys(r)
dy

∫ Q2
s(y)

1/r2

dk2⊥
k2⊥

= ᾱ
N2

c − 1

N2
c

∫ Y

Ys(r)
dy ln

(
r2Q2

s(y)
)

=
ωᾱ2

2

N2
c − 1

N2
c

(
Y − Ys(r)

)2
=

1

2ω

N2
c − 1

N2
c

ln2
(
r2Q2

s(Y )
)

(4.11)

where Ys(r) is the rapidity at which saturation is reached over a transverse size r (that is,

Qs(Ys(r)) = 1/r), ωᾱ is the logarithmic derivative of the saturation momentum, and we

used ln
(
r2Q2

s(y)
)
= ωᾱ(y−Ys(r)) for y ≥ Ys(r). eq. (4.11) holds in the leading logarithmic

approximation in the sense of eq. (3.29). The large–Nc version of this result has already

appeared in the literature [56, 57].

We now turn to the quadrupole. The corresponding evolution equation in the MFA is

obtained as

∂〈Q̂x1x2x3x4〉Y
∂Y

=− g2CF [γY (x1,x2)+γY (x3,x2)+γY (x3,x4)+γY (x1,x4)]〈Q̂x1x2x3x4〉Y

− g2

2Nc
[2γY (x1,x3)+2γY (x2,x4)−γY (x1,x2)−γY (x3,x2)

−γY (x3,x4)−γY (x1,x4)]〈Q̂x1x2x3x4〉Y

− g2Nc

2
[γY (x1,x2)+γY (x3,x4)−γY (x1,x3)−γY (x2,x4)]〈Ŝx1x2Ŝx3x4〉Y

− g2Nc

2
[γY (x1,x4)+γY (x3,x2)−γY (x1,x3)−γY (x2,x4)]〈Ŝx1x4Ŝx3x2〉Y .

(4.12)

Once again the BFKL limit is easy to check: when all the separations |xi − xj | are much

smaller than 1/Qs(Y ), one can replace 〈Q̂〉Y ≈ 1 and 〈ŜŜ〉Y ≈ 1 in the r.h.s. of the above
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equation, which then reduces to

∂

∂Y
〈Q̂x1x2x3x4〉Y ≃ −2g2CF

[
γY (x2,x3) + γY (x1,x4) + γY (x1,x2) + γY (x3,x4)

− γY (x1,x3)− γY (x2,x4)
]

= − ∂

∂Y
〈T̂x2x3 + T̂x1x4 + T̂x1x2 + T̂x3x4 − T̂x1x3 − T̂x2x4〉Y . (4.13)

The second line, which follows from the first one after using eq. (3.24), is the expected

result for 〈Q̂〉Y at weak scattering, cf. (3.19).

Let us also notice that, within the Gaussian approximation, the dipole and quadrupole

S-matrices are invariant under charge conjugation, that is, under the exchange of the quarks

with the antiquarks. More precisely, from eqs. (4.8) and (4.12), and using the fact that the

kernel γY (xi,xj) is symmetric, we easily deduce that

〈Ŝx1x2〉Y = 〈Ŝx2x1〉Y and 〈Q̂x1x2x3x4〉Y = 〈Q̂x2x3x4x1〉Y , (4.14)

so long as the above conditions already hold at Y0 (as is the case within the MV model).

Conversely, C-odd scattering amplitudes, like the odderon, cannot be accounted by the

Gaussian approximation, as they would require non-Gaussian effects already at Y0 (cf. the

discussion at the end of section 3.3).

Returning to the full equation (4.12), we notice that this is consistent with mirror

symmetry, as it should. (E.g. the r.h.s. is symmetric under the exchange x1 ↔ x3.) That

would not have been the case,7 had we considered a Gaussian Hamiltonian with only left

derivatives, as proposed in refs. [36–38]. In fact, without any further assumption, this

equation implies that the evolution for the antisymmetric part of the quadrupole defined

in eq. (2.20) is closed and homogeneous. In turn, this means that 〈Q̂asym〉Y = 0 in the

MFA provided this condition was satisfied at Y0. It is furthermore clear that the quadrupole

couples to the product of two dipoles, whose evolution in the MFA is in turn determined by

∂〈Ŝx1x2Ŝx3x4〉Y
∂Y

=− 2g2CF [γY (x1,x2) + γY (x3,x4)]〈Ŝx1x2Ŝx3x4〉Y

− g2

Nc
[γY (x1,x3)+γY (x2,x4)−γY (x1,x4)−γY (x3,x2)]〈Ŝx1x2Ŝx3x4〉Y

− g2

2Nc
[γY (x1,x4) + γY (x3,x2)− γY (x1,x3)− γY (x2,x4)]

〈Q̂x1x2x3x4 + Q̂x1x4x3x2〉Y . (4.15)

Since the equations above involve 〈Ŝx1x4Ŝx3x2〉Y and 〈Q̂x1x4x3x2〉Y we need also to consider

them with the their indices x2 and x4 interchanged. (Actually, 〈Q̂x1x4x3x2〉Y coincides with

〈Q̂x1x2x3x4 if one assumes mirror symmetry at Y0, but here we prefer to keep the discussion

7To see this, let us assume for the sake of the argument the large–Nc limit where the second term is

absent. Then we find that in the first term only γY (x3,x2) and γY (x1,x4) are present and that the fourth

term is absent. Clearly the aforementioned symmetry of the evolution equation is lost.
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general.) Thus we arrive at a homogeneous system of first order differential equations

∂

∂Y




〈Q̂x1x2x3x4〉Y
〈Q̂x1x4x3x2〉Y
〈Ŝx1x2Ŝx3x4〉Y
〈Ŝx1x4Ŝx3x2〉Y


 =

[
MY (xi)

]



〈Q̂x1x2x3x4〉Y
〈Q̂x1x4x3x2〉Y
〈Ŝx1x2Ŝx3x4〉Y
〈Ŝx1x4Ŝx3x2〉Y


 (4.16)

with MY a 4× 4 matrix. Its elements are proportional to g2γY (xi,xj) accompanied by

color factors and can be read from eqs. (4.12) and (4.15). The difficulty that appears now

is that one cannot solve eq. (4.16) for a generic dependence of γY (xi,xj) on Y , since in

general the matrices MY at different rapidities Y do not commute with each other, that

is [MY1 ,MY2 ] 6= 0. (More precisely, one could write down a formal solution which involves

the rapidity-ordered exponential of the mixing matrix, but we do not find that very useful

in practice.)

There are special cases where the rapidity integration in the equation above can be

explicitly performed, leading to a simpler expression. The large–Nc limit to be discussed in

the next subsection is one such a special case. Another one is when the kernel γY (xi,xj), is

a separable function of Y and the transverse coordinates, plus an arbitrary function of Y :

γY (xi,xj) = h1(Y ) g(xi,xj) + h2(Y ) . (4.17)

This property is manifestly satisfied within the (homogeneous) MV model, as noticed after

eq. (3.9), and it is also approximately satisfied by the solution to the BK equation, at

least in particular kinematical regimes: in the window for extended geometric scaling,

where γY (r) ∝ (r2Q2
s(Y ))γs with γs ≈ 0.63 [49–51], and also deeply at saturation where

γY (r) ∝ ln[r2Q2
s(Y )], cf. eq. (4.11). Presumably, this is a reasonable approximation for all

the dipole sizes. Furthermore, this is also fulfilled in some widely used dipole models, like

the GBW model [61, 62], where ΓY (r) = r2Q2
s(Y )/4. The role of separability in simplifying

the results of the high-energy evolution in a similar context has been previously recognized

in ref. [35].

Within such a simplified scenario, the Y -dependence factorizes out from the mixing

matrix and the resulting, Y -independent, matrix M can be diagonalized. Then one can

explicitly solve the system of equations. Within the context of the MV model this was

done in refs. [8, 31, 35]. In that case, one had to deal with a 2×2 system only, because

the Wilson lines were constructed via ‘left’ iterations alone, cf. eqs. (3.16)–(3.17). That

is, the associated, effective, evolution equations were not explicitly ‘mirror-symmetric’,

unlike the above equations (4.12) and (4.15). However, this symmetry is recovered in the

final results, because the color charge distribution in the MV model in symmetric in x−

(cf. the discussion after eq. (3.17)). Moreover, for a separable kernel, the final results for

all the n-point functions depend only upon the integral
∫ Y

dy γy (a property which looks

natural in the case of the dipole, cf. eq. (4.9), but which in general requires separability).

Hence, the results obtained in [8, 31, 35] within the MV model can be transposed to a

more general Gaussian which is still ‘separable’, by simply replacing the kernel in the final

formulæ according to eq. (4.17). We shall not write here the respective general results, but

refer to [8] for 〈Q̂x1x2x3x4〉Y and to [35] for 〈Ŝx1x2Ŝx3x4〉Y .
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But separability is not always needed in order to obtain explicit solutions at finite Nc:

for special configurations of the 4 external points xi in the transverse plane, the matrix

MY in eq. (4.16) may happen to simplify independently of the structure of the kernel

γY (xi,xj). As an example consider the evolution of the 2-dipole S-matrix 〈Ŝx1x3Ŝx3x2〉Y ,
in which the quark in one dipole and the antiquark in the other dipole are located at the

same point x3. The expression of this correlator in the Gaussian approximation has been

shown in eq. (3.41) and we would like to check that here. By identifying x2 with x3 in

eq. (4.15) and then relabeling x4 as x2 for convenience, we see that the two quadrupole

operators in the r.h.s. there reduce to single dipoles and then this equation decouples from

the evolution of the quadrupole:

∂〈Ŝx1x3Ŝx3x2〉Y
∂Y

= −
{
2g2CF [γY (x1,x3) + γY (x3,x2)]

+
g2

Nc
[γY (x1,x3) + γY (x3,x2)− γY (x1,x2)]

}
〈Ŝx1x3Ŝx3x2〉Y

+
g2

Nc
[γY (x1,x3) + γY (x3,x2)− γY (x1,x2)] 〈Ŝx1x2〉Y . (4.18)

The last, inhomogeneous, term in the r.h.s. is particularly interesting, as it describes a

process in which the two dipoles Ŝx1x3 and Ŝx3x2 having one common leg merge with each

other into a single dipole Ŝx1x2 . This process is suppressed at large Nc (as expected, since

dipoles cannot merge with each other in the large Nc limit [27]) but for finite Nc it controls

the approach towards the unitarity limit, since a single dipole scatter less than a system

of two dipoles.

Using eq. (4.8) to express γY (xi,xj) in terms of the logarithmic derivative of 〈Ŝxixj
〉Y

we can rewrite the above equation as

∂〈Ŝx1x3Ŝx3x2〉Y
∂Y

=

[
∂

∂Y
ln

〈Ŝx1x3〉1+ε
Y 〈Ŝx3x2〉1+ε

Y

〈Ŝx1x2〉εY

]
〈Ŝx1x3Ŝx3x2〉Y

− ε

[
∂

∂Y
ln

〈Ŝx1x3〉Y 〈Ŝx3x2〉Y
〈Ŝx1x2〉Y

]
〈Ŝx1x2〉Y , (4.19)

where we temporarily defined ε = 1/(N2
c − 1). This is a first order inhomogeneous linear

differential equation which can be readily solved, with the result shown in eq. (3.41). Some

other special configurations, which in particular involve the quadrupole, will be studied in

section 4.4.

The generalization of the above considerations to an arbitrary n-point function like

eq. (2.9) is straightforward. For instance, the mean-field version of the equation obeyed by

the sextupole S-matrix 〈Ŝ(6)〉Y can be inferred from the results in appendix B of ref. [12].

4.3 Quadrupole evolution at large Nc

In the large–Nc limit, the hierarchy generated by the Gaussian approximation drastically

simplifies: it reduces to a triangular hierarchy, in which the equations can be successively

decoupled from each other and explicitly solved. Let us illustrate that on the example of the
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4-point functions — the quadrupole 〈Q̂x1x2x3x4〉Y and the 2-dipole system 〈Ŝx1x2Ŝx3x4〉Y
— which in general mix under evolution, as shown in eq. (4.16). At large Nc, one can

ignore the last two lines in the r.h.s. of eq. (4.15), meaning that the 2-dipole system

evolves independently of the quadrupole. The corresponding entries in the mixing matrix

in eq. (4.16) are now equal to zero, so that this matrix becomes triangular, as anticipated.

Specifically, eq. (4.15) reduces to

∂〈Ŝx1x2Ŝx3x4〉Y
∂Y

= −g2Nc[γY (x1,x2) + γY (x3,x4)]〈Ŝx1x2Ŝx3x4〉Y , (4.20)

which is immediately solved as

〈Ŝx1x2Ŝx3x4〉Y = e−ΓY,Y0
(x1,x2)−ΓY,Y0

(x3,x4)〈Ŝx1x2Ŝx3x4〉Y0 , (4.21)

and where we have defined

ΓY,Y0(xi,xj) ≡ ΓY (xi,xj)− ΓY0(xi,xj). (4.22)

As expected, this implies that the 2-dipole S-matrix factorizes at large Nc provided it did

so in the initial conditions at Y0:

〈Ŝx1x2Ŝx3x4〉Y = 〈Ŝx1x2〉Y 〈Ŝx3x4〉Y . (4.23)

Consider now the evolution of the quadrupole: by keeping in (4.12) only the leading

terms at large Nc (which in particular means using the factorization property (4.23)),

one finds
∂

∂Y
〈Q̂x1x2x3x4〉Y =

− g2Nc

2
[γY (x1,x2) + γY (x3,x2) + γY (x3,x4) + γY (x1,x4)] 〈Q̂x1x2x3x4〉Y

− g2Nc

2
[γY (x1,x2) + γY (x3,x4)− γY (x1,x3)− γY (x2,x4)] 〈Ŝx1x2〉Y 〈Ŝx3x4〉Y

− g2Nc

2
[γY (x3,x2)+γY (x1,x4)−γY (x1,x3)−γY (x2,x4)] 〈Ŝx3x2〉Y 〈Ŝx1x4〉Y ,

(4.24)

which is an ordinary, first order, inhomogeneous differential equation. The dipole S-matrix

is given by (4.9) with CF ≃ Nc/2 (as appropriate at large Nc) and acts as a source for

the evolution of the quadrupole. As explained in section 4.1, in practice it is preferable

to view eq. (4.9) as a definition of the Gaussian kernel in terms of the dipole S-matrix,

since the latter is a more directly relevant physical quantity. By using eq. (4.2) to express

γY (x1,x2) in terms of the logarithmic derivative of 〈Ŝx1x2〉Y we can rewrite eq. (4.24) as

∂〈Q̂x1x2x3x4〉Y
∂Y

=
1

2

[
∂

∂Y
ln〈Ŝx1x2〉Y 〈Ŝx3x2〉Y 〈Ŝx3x4〉Y 〈Ŝx1x4〉Y

]
〈Q̂x1x2x3x4〉Y

+
1

2

[
∂

∂Y
ln

〈Ŝx1x2〉Y 〈Ŝx3x4〉Y
〈Ŝx1x3〉Y 〈Ŝx2x4〉Y

]
〈Ŝx1x2〉Y 〈Ŝx3x4〉Y

+
1

2

[
∂

∂Y
ln

〈Ŝx1x4〉Y 〈Ŝx3x2〉Y
〈Ŝx1x3〉Y 〈Ŝx2x4〉Y

]
〈Ŝx1x4〉Y 〈Ŝx3x2〉Y . (4.25)

– 37 –



J
H
E
P
0
4
(
2
0
1
2
)
0
2
5

The general solution of this equation is easily found as [12]

〈Q̂x1x2x3x4〉Y =
√
〈Ŝx1x2〉Y 〈Ŝx3x2〉Y 〈Ŝx3x4〉Y 〈Ŝx1x4〉Y

[
〈Q̂x1x2x3x4〉Y0√

〈Ŝx1x2〉Y0〈Ŝx3x2〉Y0〈Ŝx3x4〉Y0〈Ŝx1x4〉Y0

+
1

2

∫ Y

Y0

dy
〈Ŝx1x3〉y〈Ŝx2x4〉y√

〈Ŝx1x2〉y〈Ŝx3x2〉y〈Ŝx3x4〉y〈Ŝx1x4〉y

∂

∂y

〈Ŝx1x2〉y〈Ŝx3x4〉y+〈Ŝx1x4〉y〈Ŝx3x2〉y
〈Ŝx1x3〉y〈Ŝx2x4〉y

]
.

(4.26)

This solution is already explicit, but it takes an even simpler form if one assumes separa-

bility, in the sense of the discussion after eq. (4.16). In that case, the integral over y in

eq. (4.26) can be exactly performed, to yield

〈Q̂x1x2x3x4〉Y =
Lx1x2x3x4

Lx1x2x4x3

〈Ŝx1x2〉Y 〈Ŝx3x4〉Y +
Lx1x4x3x2

Lx1x4x2x3

〈Ŝx3x2〉Y 〈Ŝx1x4〉Y

+

√
〈Ŝx1x2〉Y 〈Ŝx3x2〉Y 〈Ŝx3x4〉Y 〈Ŝx1x4〉Y√
〈Ŝx1x2〉Y0〈Ŝx3x2〉Y0〈Ŝx3x4〉Y0〈Ŝx1x4〉Y0

×
[
〈Q̂x1x2x3x4〉Y0 −

Lx1x2x3x4

Lx1x2x4x3

〈Ŝx1x2〉Y0〈Ŝx3x4〉Y0

−Lx1x4x3x2

Lx1x4x2x3

〈Ŝx3x2〉Y0〈Ŝx1x4〉Y0

]
, (4.27)

where we have denoted

Lx1x2x3x4 = ΓY,Y0(x1,x2) + ΓY,Y0(x3,x4)− ΓY,Y0(x1,x3)− ΓY,Y0(x2,x4). (4.28)

Notice that the function L also depends upon Y and Y0, but because of separability the

ratio between two L’s is a function of the transverse coordinates alone. eq. (4.27) depends

upon the kernel γy(xi,xj) only via its integral over y. This is a consequence of separability,

as already noticed in section 3.2 in the context of the MV model. As a matter of facts,

eq. (4.27) is quite similar to the corresponding expression in the MV model [3, 8] and

it becomes formally identical to it once we assume an initial condition of the MV type.

Specifically, eq. (4.27) reduces to

〈Q̂x1x2x3x4〉Y =
Lx1x2x3x4

Lx1x2x4x3

〈Ŝx1x2〉Y 〈Ŝx3x4〉Y +
Lx1x4x3x2

Lx1x4x2x3

〈Ŝx3x2〉Y 〈Ŝx1x4〉Y , (4.29)

provided this functional relation is already satisfied at Y0, as is indeed the case in the MV

model and for largeNc [3, 8]. Note that there is an alternative way to deduce eq. (4.29) from

eq. (4.27), which makes no reference to the MV model. Namely, if one assumes eq. (4.27)

to capture the whole evolution from Y → −∞ (where the Wilson lines reduce to the unit

matrix) up to the rapidity Y of interest, then one can use 〈Q̂〉Y0 → 1 and 〈Ŝ〉Y0 → 1 for

Y0 → −∞ to check that the expression within the square brackets in eq. (4.27) vanishes

for that particular initial condition.
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In general, i.e. without assuming separability, one expects the ratio of two L’s to

depend very weakly on Y . If so, it might be still a good approximation to use the simpler

formula (4.29) for the quadrupole rather than the general one in eq. (4.26), which is more

involved. For that purpose, the function L in eq. (4.29) should be defined by eq. (4.28)

with Y0 → −∞, and hence

ΓY,Y0(x1,x2) → ΓY (x1,x2) = − ln〈Ŝx1x2〉Y . (4.30)

Given a smooth approximation for 〈Ŝ〉Y , such as the numerical solution to the BK equation,

eq. (4.26) (or (4.29)) provides a correspondingly smooth approximation for 〈Q̂〉Y , which
is guaranteed to be correct whenever all the transverse separations rij ≡ |xi − xj | are
either much smaller, or much larger, than 1/Qs(Y ), and for large Nc. On the other hand,

the present approximations are strictly speaking not under control in the transition region

around saturation (rij ∼ 1/Qs(Y )), nor for very asymmetric configurations, such that some

distances rij are much larger than 1/Qs while the other ones are much smaller. Some very

asymmetric but relatively simple configurations will be discussed in the next subsection,

directly for finite Nc.

4.4 Special configurations at finite Nc

In this subsection, we shall study some special configurations of the 4-point function and the

6-point function in the transverse plane, which because of their degree of symmetry allow

for explicit, and relatively simple, solutions without additional assumptions like separability

or large–Nc.

First we shall consider the class of configurations introduced in [12] for which the only

constraints are r13 = r14 and r23 = r24. For example, three such configurations are shown

in figures 3.a, 3.b and 3.c. From these figures, it should be clear that there is a high degree

of variability (concerning both shapes and sizes) within this particular class. By using the

constraints aforementioned, it is straightforward to see that eqs. (4.12) and (4.15) reduce to

∂〈Q̂x1x2x3x4〉Y
∂Y

=− g2CF [γY (x1,x2)+γY (x3,x2)+γY (x3,x4)+γY (x1,x4)]〈Q̂x1x2x3x4〉Y

− g2

2Nc
[γY (x1,x3)+γY (x2,x4)−γY (x1,x2)−γY (x3,x4)]〈Q̂x1x2x3x4〉Y

− g2

2Nc
[γY (x1,x2)+γY (x3,x4)−γY (x1,x3)−γY (x2,x4)]〈Ŝx1x2Ŝx3x4〉Y

(4.31)

and

∂〈Ŝx1x2Ŝx3x4〉Y
∂Y

= −2g2CF [γY (x1,x2) + γY (x3,x2)]〈Ŝx1x2Ŝx3x4〉Y . (4.32)

Thus, for such configurations, the evolution of a system of 2 dipoles decouples from that of

the quadrupole even without invoking separability. By also using eq. (4.8) for the dipole

S-matrix in the Gaussian approximation at finite Nc, we can easily solve eq. (4.32) to find

〈Ŝx1x2Ŝx3x4〉Y =
〈Ŝx1x2Ŝx3x4〉Y0

〈Ŝx1x2〉Y0〈Ŝx3x4〉Y0

〈Ŝx1x2〉Y 〈Ŝx3x4〉Y (4.33)
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(a) (b) (c) (d)

Figure 3. (a), (b) and (c) correspond to special configurations of the quadrupole for which

r13 = r14 and r23 = r24. In (a) r12 = r34 and all rij of the same order, in (b) r34 ≪ r12 ∼ r14 and

in (c) r12 ∼ r34 ≪ r14. The average values of Q̂ and Ŝ6 depend only on the distances depicted by

straight lines. Figure (d) corresponds to the line configuration for the operator Ŝ6.

which simplifies furthermore to

〈Ŝx1x2Ŝx3x4〉Y = 〈Ŝx1x2〉Y 〈Ŝx3x4〉Y , (4.34)

provided the latter holds in the initial condition at Y0 (as is indeed the case within the

MV model, as one can similarly check). Then it is clear that eq. (4.31) can be solved as an

inhomogeneous first order differential equation and it gives

〈Q̂x1x2x3x4〉Y =

〈Ŝx1x2Ŝx3x4〉Y0

〈Ŝx1x2〉Y0〈Ŝx3x4〉Y0

〈Ŝx1x2〉Y 〈Ŝx3x4〉Y + [〈Q̂x1x2x3x4〉Y0 − 〈Ŝx1x2Ŝx3x4〉Y0 ]

×
√

〈Ŝx1x2〉Y 〈Ŝx3x2〉Y 〈Ŝx3x4〉Y 〈Ŝx1x4〉Y
〈Ŝx1x2〉Y0〈Ŝx3x2〉Y0〈Ŝx3x4〉Y0〈Ŝx1x4〉Y0

(
〈Ŝx1x4〉Y 〈Ŝx3x2〉Y
〈Ŝx1x2〉Y 〈Ŝx3x4〉Y

〈Ŝx1x2〉Y0〈Ŝx3x4〉Y0

〈Ŝx1x4〉Y0〈Ŝx3x2〉Y0

) 1
2(N2

c−1)

. (4.35)

Again, when the initial condition is given by the MV model (where eq. (4.36) below holds

indeed, as one can explicitly check), the above becomes very simple:

〈Q̂x1x2x3x4〉Y = 〈Ŝx1x2〉Y 〈Ŝx3x4〉Y . (4.36)

This result is truly remarkable: within the class of configurations at hand, the quadrupole

factorizes into two dipoles independently of how small or large the various distances rij
are, and for any Nc, so long as the two constraints r13 = r14 and r23 = r24 are satisfied.

It would be interesting to check this factorization via numerical solutions to the JIMWLK

equation, as a non-trivial test of the present MFA.

Now let us proceed to our second example and consider the operator

Q̂x1x2x3x4Ŝx4x3 =
1

Nc
tr(V †

x1
Vx2V

†
x3
Vx4)

1

Nc
tr(V †

x4
Vx3). (4.37)
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The choice is of direct phenomenological interest, since the operator above is the most com-

plicated quantity appearing in the calculation of di-hadron production in proton-nucleus

collisions8 [2–5]. Considering the same configuration as before, that is, taking r13 = r14 and

r23 = r24, we see that the evolution couples the operator in eq. (4.37) to Ŝx1x2Ŝx1x2Ŝx2x1 .

After a straightforward calculation, similar to the one leading at eq. (4.36), we arrive at

〈Q̂x1x2x3x4Ŝx4x3〉Y =〈Ŝx1x2Ŝx3x4Ŝx4x3〉Y =
N2

c − 1

N2
c

〈Ŝx1x2〉Y 〈Ŝx3x4〉
2N2

c

N2
c−1

Y +
1

N2
c

〈Ŝx1x2〉Y .
(4.38)

(Once again, we have assumed this equation to hold already in the initial condition at Y0,

which is in particular true within the MV model, as one can check.) It is interesting that

for this configuration, and similar to eq. (4.36), the result depends only on r12 and r34, but

not on r14 and r23. Also, by keeping Nc finite, we notice that the last term in the r.h.s.

(the single dipole S-matrix) dominates deeply at saturation. This is in agreement with our

earlier discussion in 3.4, since the linear combination

Q̂x1x2x3x4Ŝx4x3 −
1

N2
c

Ŝx1x2 (4.39)

is a special case of the operator in eq. (3.37) for this particular configuration. In fact, the

operator that appears in the di-hadron cross section is the combination

Ŝ6x1x2x3x4 =
N2

c

N2
c − 1

Q̂x1x2x3x4Ŝx4x3 −
1

N2
c − 1

Ŝx1x2 , (4.40)

which is also the quantity studied numerically in [11]. Using the previous results one finds

that, for our special configuration, the expectation value of Ŝ6 is given by the relatively

simple expression

〈Ŝ6x1x2x3x4〉Y = 〈Ŝx1x2〉Y
[
〈Ŝx3x4〉Y

] 2N2
c

N2
c−1 . (4.41)

It is amusing to note that for this particular configuration and for large Nc, the 4-point

function relevant for di-hadron production factorizes as 〈Ŝ6x1x2x3x4〉Y = 〈Ŝx1x2〉Y Ŝx3x4〉2Y .
This is precisely the factorization formula used (for a generic configuration) in the phe-

nomenological study in [6] — at that time, by lack of a better formula. Such a factorization

however has no deep justification and is merely a property of the configuration at hand.

As our next example will show, this ‘factorization’ can badly fail for other, equally simple,

configurations.

Specifically, let us consider the expectation value of the operator (4.37) for the ‘line’

configuration studied in [11, 12] and shown in figure 3.d. Note that the two quarks of the

quadrupole and the antiquark of the dipole are put in a same point (x1 = x3), and similarly

for the two antiquarks of the quadrupole and the quark in the dipole (x2 = x4). Thus, only

one non-trivial distance r ≡ r12 = r23 = r34 = r14 characterizes the configuration. Then one

can easily check that the evolution of Q̂x1x2x1x2Ŝx2x1 couples again to Ŝx1x2Ŝx1x2Ŝx2x1 ,

8In fact, the operator appearing in such a process is Q̂x2x3x4x1
Ŝx3x4

, but, due to the invariance under

charge conjugation, its expectation value is equal to the one of the operator in eq. (4.37).
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JIMWLK, Y=0
MFA Nc = 3, Y=0
JIMWLK, Y=5.18
MFA Nc = 3, Y=5.18
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〈Ŝ
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Figure 4. The expectation value of Ŝ6, as defined in eq. (4.40), for the ‘line’ configuration. Left:

as a function of the scaling variable rQs. Continuous magenta: JIMWLK at Y=0. Dashed cyan:

MFA for Nc=3 at Y=0. Continuous red: JIMWLK at Y=5.18. Dashed blue: MFA for Nc=3

at Y=5.18. Right: as a function of 1−〈Ŝ〉Y . Continuous red: JIMWLK at six different values

of rapidity Y=0, 1.04, 2.07, 3.11, 4.14 and 5.18. Continuous blue: complete result in the MFA

for Nc = 3. Dashed magenta: large–Nc result in the MFA. Dotted gold: assuming factorization

for the expectation value of Q̂Ŝ and using the MFA for Nc = 3 for the expectation value of the

quadrupole Q̂. Dotted dashed green: for illustrative purposes we also show 〈Ŝ〉3Y . JIMWLK curves

are constructed from the numerical solution given in [11]. MFA curves are analytical expressions

in terms of 〈Ŝ〉, which is again provided by the numerical solution in [11] for the purposes of the

left figure.

leading to a 2×2 inhomogeneous system of equations. Expressing γY (r) in terms of the

dipole 〈Ŝ(r)〉Y and using an obvious shorthand notation we have

∂〈Q̂Ŝ〉Y
∂ ln〈Ŝ〉Y

=
3N2

c − 1

N2
c − 1

〈Q̂Ŝ〉Y +
2N2

c

N2
c − 1

〈Ŝ3〉Y − 4

N2
c − 1

〈Ŝ〉Y , (4.42)

∂〈Ŝ3〉Y
∂ ln〈Ŝ〉Y

=
2

N2
c − 1

〈Q̂Ŝ〉Y +
3N2

c − 1

N2
c − 1

〈Ŝ3〉Y − 4

N2
c − 1

〈Ŝ〉Y . (4.43)

The solution to this system is straightforward to obtain; so long as 〈Q̂Ŝ〉Y is concerned,

one finds

〈Q̂Ŝ〉Y =
(Nc + 2)(Nc − 1)

2Nc
〈Ŝ〉

3Nc−1
Nc−1
Y − (Nc + 1)(Nc − 2)

2Nc
〈Ŝ〉

3Nc+1
Nc+1
Y , (4.44)

where we assumed that the above is already valid at Y0, as is the case in the MV model.

Using this result together with eq. (4.40), it is straightforward to evaluate 〈Ŝ6〉Y for this

particular configuration and compare with the numerical results in ref. [11]. We shall find

it rewarding to plot 〈Ŝ6〉Y in two different ways; first as a function of rQs and then as a

function of 1− 〈Ŝ〉Y . To be in accordance with [11], the saturation momentum is defined

by the condition 〈Ŝ〉Y = 1/
√
e for rQs =

√
2.

We show this comparison in figure 4, where for some of the curves we have used the

numerical data of [11]. On the left we show the correlator of interest as a function of rQs

and for two values of the rapidity: Y = 0, which is where one starts the evolution (with
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initial conditions of the MV type), and Y = 5.18, which is large enough for the effects of

the evolution to be fully developed. The curves denoted as ‘MFA’ represent our present

results, cf. eq. (4.44) and (4.40), whereas the ‘JIMWLK’ curves follow from the numerical

solution to the JIMWLK equation. For Y = 0, the two types of curves overlap with each

by construction, as they both reduce to the respective prediction of the MV model. What

is remarkable though, is that a very good agreement between the numerical solution and

the MFA persists for Y = 5.18. In the limiting regimes of weak and respectively strong

scattering, the respectives curves are practically indistinguishable. In the transition region

around rQs ∼ 1, the agreement is not that perfect anymore, but the two curves are still

very close to each other, confirming that the MFA is also an excellent global approximation.

From figure 4 (left) we also notice that the shape of the curve changes as we evolve

from Y = 0 to higher values of rapidity (Y = 5.18 in the figure). However, this change

is mostly attributed to the evolution of 〈Ŝ〉Y as a function of rQs as the rapidity grows.

Indeed, in the right panel of figure 4 we show the correlator of interest as a function of

1− 〈Ŝ〉Y . One can see that the curves obtained from the numerical solution to JIMWLK

for various values of Y form a very thin “band” whose borderline on the “lower” side is

the MFA. This “band” is practically a line perfectly overlapping with the MFA when the

scattering is either weak or strong, and becomes just a bit wider in the transition region.

Thus, as we evolve in rapidity, the shape of the curve is barely changing. In fact, if one

expands out the plot in order to better disentangle the various steps in the evolution, one

can see that the high–Y curve stabilizes very close to the Y = 0 curve after just a few units

in rapidity.

Still in the right plot we also show two different approximations for 〈Ŝ6〉Y , the one is the
large-Nc result, while the other consists of factorizing 〈Q̂Ŝ〉Y into 〈Q̂〉Y 〈Ŝ〉Y , as it would be

justified at large Nc, but then using the finite–Nc Gaussian approximation for 〈Q̂〉Y . This
latter approximation takes into account some 1/N2

c corrections, but not in a systematic

way, and was used in [11] since the (MV-like) expression (4.44) was not available at the

time. Comparing with the numerical findings in [11], we already saw that the complete

result eq. (4.44) at finite–Nc is the one which shows the best agreement. Even though it

is not very significant, we note that the large–Nc expression is the next one closer to the

numerical data, perhaps because it is at least a systematic approximation. For illustrative

purposes we also show 〈Ŝ〉3Y , which is based neither on a large–Nc approximation nor on a

mean field one, but simply corresponds to a ‘naive’ counting of Wilson lines. It fails badly

even in the BFKL regime and clearly it has no chance to describe properly the correlator

of interest.
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