33,064 research outputs found
Pairing and realistic shell-model interactions
This paper starts with a brief historical overview of pairing in nuclei,
which fulfills the purpose of properly framing the main subject. This concerns
the pairing properties of a realistic shell-model effective interaction which
has proved very successful in describing nuclei around doubly magic 132Sn. We
focus attention on the two nuclei 134Te and 134Sn with two valence protons and
neutrons, respectively. Our study brings out the key role of one particle-one
hole excitations in producing a significant difference between proton and
neutron pairing in this region
Shell-model study of the N=82 isotonic chain with a realistic effective hamiltonian
We have performed shell-model calculations for the even- and odd-mass N=82
isotones, focusing attention on low-energy states. The single-particle energies
and effective two-body interaction have been both determined within the
framework of the time-dependent degenerate linked-diagram perturbation theory,
starting from a low-momentum interaction derived from the CD-Bonn
nucleon-nucleon potential. In this way, no phenomenological input enters our
effective Hamiltonian, whose reliability is evidenced by the good agreement
between theory and experiment.Comment: 7 pages, 11 figures, 3 tables, to be published in Physical Review
Recommended from our members
Privacy-preserving model learning on a blockchain network-of-networks.
ObjectiveTo facilitate clinical/genomic/biomedical research, constructing generalizable predictive models using cross-institutional methods while protecting privacy is imperative. However, state-of-the-art methods assume a "flattened" topology, while real-world research networks may consist of "network-of-networks" which can imply practical issues including training on small data for rare diseases/conditions, prioritizing locally trained models, and maintaining models for each level of the hierarchy. In this study, we focus on developing a hierarchical approach to inherit the benefits of the privacy-preserving methods, retain the advantages of adopting blockchain, and address practical concerns on a research network-of-networks.Materials and methodsWe propose a framework to combine level-wise model learning, blockchain-based model dissemination, and a novel hierarchical consensus algorithm for model ensemble. We developed an example implementation HierarchicalChain (hierarchical privacy-preserving modeling on blockchain), evaluated it on 3 healthcare/genomic datasets, as well as compared its predictive correctness, learning iteration, and execution time with a state-of-the-art method designed for flattened network topology.ResultsHierarchicalChain improves the predictive correctness for small training datasets and provides comparable correctness results with the competing method with higher learning iteration and similar per-iteration execution time, inherits the benefits of the privacy-preserving learning and advantages of blockchain technology, and immutable records models for each level.DiscussionHierarchicalChain is independent of the core privacy-preserving learning method, as well as of the underlying blockchain platform. Further studies are warranted for various types of network topology, complex data, and privacy concerns.ConclusionWe demonstrated the potential of utilizing the information from the hierarchical network-of-networks topology to improve prediction
Remote monitoring of a thermal plume
A remote-sensing experiment conducted on May 17, 1977, over the Surry nuclear power station on the James River, Virginia is discussed. Isotherms of the thermal plume from the power station were derived from remotely sensed data and compared with in situ water temperature measurements provided by the Virginia Electric and Power Company, VEPCO. The results of this study were also qualitatively compared with those from other previous studies under comparable conditions of the power station's operation and the ambient flow. These studies included hydraulic model predictions carried out by Pritchard and Carpenter and a 5-year in situ monitoring program based on boat surveys
Low-momentum nucleon-nucleon interaction and shell-model calculations
We discuss the use of the low-momentum nucleon-nucleon NN interaction V-low-k
in the derivation of the shell-model effective interaction and emphasize its
practical value as an alternative to the Brueckner G-matrix method. We present
some selected results of our current study of exotic nuclei around closed
shells, which have been obtained starting from the CD-Bonn potential. We also
show some results of calculations performed with different phase-shift
equivalent NN potentials, and discuss the effect of changes in the cutoff
momentum which defines the V-low-k potential.Comment: 5 pages, 5 figures, 1 table, Talk presented at CDN05, 31 Jan - 4 Feb
2005, University of Tokyo, Japa
- …