148 research outputs found

    Terapia cognitiva : aplicações de uma técnica para qualidade de vida e saúde

    Get PDF
    Esta pesquisa teve por objetivo geral aplicar e avaliar uma técnica específica de terapia cognitiva - organizada em 12 sessões grupais e denominada Tomada de Decisão e Qualidade de Vida -, destinada a promover saúde e incrementar qualidade de vida. No total, participaram 18 servidores de uma instituição pública de ensino superior. Nas etapas de admissão e de encerramento, aplicaram-se : Questionário de Qualidade de Vida, Inventário Beck de Ansiedade e Inventário Beck de Depressão. Foram identificadas melhoras significativas nos domínios físico, psicológico, meio ambiente, geral e saúde, relacionados à qualidade de vida. Não se verificaram alterações significantes nos escores de ansiedade (p=0,26). Em contrapartida, os escores de depressão indicaram melhora (p=0,02). Os resultados sugerem que a técnica pode ser empregada para promover saúde e qualidade de vida.In this study we implemented and assessed a specific cognitive therapy technique - Decision Making and Quality of Life, which is used to promote health and improve quality of life. Eighteen employees from a higher education institution participated in the study, which was organized into 12 group sessions. At the admission and concluding phases, we asked participants to complete the World Health Organization Quality of Life - Bref Questionnaire, the Beck Anxiety Inventory and the Beck Depression Inventory. Results showed significant improvement in five of the domains that measure quality of life: physical, psychological, environmental, general, and health. There were no significant changes (p=0.26) in anxiety scores. In contrast, the depression scores got significantly better (p=0.02). The results suggest that the proposed technique is conducive to health promotion and quality of life

    Soft spin waves in the low temperature thermodynamics of Pr_{0.7}Ca_{0.3}MnO_{3}

    Full text link
    We present a detailed magnetothermal study of Pr(0.7)Ca(0.3)MnO(3), a perovskite manganite in which an insulator-metal transition can be driven by magnetic field, but also by pressure, visible light, x-rays, or high currents. We find that the field-induced transition is associated with an enormous release of energy which accounts for its strong irreversibility. In the ferromagnetic metallic state, specific heat and magnetization measurements indicate a much smaller spin wave stiffness than that seen in any other manganite, which we attribute to spin waves among the ferromagnetically ordered Pr moments. The coupling between the Pr and Mn spins may also provide a basis for understanding the low temperature phase diagram of this most unusual manganite.Comment: 10 pages, LATEX, 5 PDF figures, corrected typo

    Sheets of vertically aligned BaTiO<sub>3</sub> nanotubes reduce cell proliferation but not viability of NIH-3T3 cells

    Get PDF
    All biomaterials initiate a tissue response when implanted in living tissues. Ultimately this reaction causes fibrous encapsulation and hence isolation of the material, leading to failure of the intended therapeutic effect of the implant. There has been extensive bioengineering research aimed at overcoming or delaying the onset of encapsulation. Nanotechnology has the potential to address this problem by virtue of the ability of some nanomaterials to modulate interactions with cells, thereby inducing specific biological responses to implanted foreign materials. To this effect in the present study, we have characterised the growth of fibroblasts on nano-structured sheets constituted by BaTiO3, a material extensively used in biomedical applications. We found that sheets of vertically aligned BaTiO3 nanotubes inhibit cell cycle progression - without impairing cell viability - of NIH-3T3 fibroblast cells. We postulate that the 3D organization of the material surface acts by increasing the availability of adhesion sites, promoting cell attachment and inhibition of cell proliferation. This finding could be of relevance for biomedical applications designed to prevent or minimize fibrous encasement by uncontrolled proliferation of fibroblastic cells with loss of material-tissue interface underpinning long-term function of implants

    Effects of different lower-limb sensory stimulation strategies on postural regulation – A systematic review and meta-analysis

    Get PDF
    Systematic reviews of balance control have tended to only focus on the effects of single lower-limb stimulation strategies, and a current limitation is the lack of comparison between different relevant stimulation strategies. The aim of this systematic review and meta-analysis was to examine evidence of effects of different lower-limb sensory stimulation strategies on postural regulation and stability. Moderate- to high- pooled effect sizes (Unbiased (Hedges’ g) standardized mean differences (SMD) = 0.31 – 0.66) were observed with the addition of noise in a Stochastic Resonance Stimulation Strategy (SRSS), in three populations (i.e., healthy young adults, older adults, and individuals with lower-limb injuries), and under different task constraints (i.e., unipedal, bipedal, and eyes open). A Textured Material Stimulation Strategy (TMSS) enhanced postural control in the most challenging condition – eyes-closed on a stable surface (SMD = 0.61), and in older adults (SMD = 0.30). The Wearable Garments Stimulation Strategy (WGSS) showed no or adverse effects (SMD = -0.68 – 0.05) under all task constraints and in all populations, except in individuals with lower-limb injuries (SMD = 0.20). Results of our systematic review and meta-analysis revealed that future research could consider combining two or more stimulation strategies in intervention treatments for postural regulation and balance problems, depending on individual need

    Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes

    Get PDF
    Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for similar to 10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi

    Inductively coupled plasma mass spectrometric detection for multielement flow injection analysis and elemental speciation by reversed-phase liquid chromatography

    Get PDF
    The feasibility of using an inductively coupled plasma mass spectrometer as a muitieiement detector for flow injection analysis (FIA) and ion-pair reversed-phase liquid chromatography was investigated. Sample introduction was by uitrasonk nebulization with aerosol desolvation. Absolute detecton limits for FIA ranged from 0.01 to 0.1 ng for most elements using 10-pL injections. Over 30 elements were surveyed for their response to both anionic and cationic ion pairing reagents. The separation and selective detection of various As and Se species were demonstrated, yielding detection limits near 0.1 ng (as element) for ail six species present. Determination of 15 elements in a single injection with multiple ion monitoring produced shniiar detection limits. Isotope ratios were measured with sufficient precision (better than 2%) and accuracy (about 1 %) on eluting peaks of Cd and Pb to demonstrate that liquid chromatographyhductively coupled plasma mass spectrometry should make speciation studies with stable tracer isotopes feasible

    Relation of IL28B Gene Polymorphism with Biochemical and Histological Features in Hepatitis C Virus-Induced Liver Disease

    Get PDF
    BACKGROUND/AIMS: Polymorphism at the IL28B gene may modify the course of hepatitis C virus (HCV) chronic infection. Our aim was to study the influence of IL28B rs12979860 gene polymorphism on the biochemistry and pathology of HCV-induced disease in the clinical course from mild chronic hepatitis C to hepatocellular carcinoma. METHODS: We have determined the rs12979860 single nucleotide polymorphism (SNP) upstream IL28B gene in two groups of patients with HCV-induced chronic liver disease: 1) 268 patients (159 men) with biopsy-proven chronic hepatitis C, to analyse its relation with biochemical, virological and histological features; and 2) 134 patients (97 men) with HCV-related hepatocellular carcinoma. The distribution of the analysed SNP in hepatocellular carcinoma patients was compared with that found in untreated chronic hepatitis C patients. All patients were white and most were Spaniards. RESULTS: In multivariate analysis ALT values were higher (P = 0.001) and GGT values were lower (P<0.001) in chronic hepatitis C patients homozygotes for the major rs12979860C allele as compared with carriers of the mutated rs12979860T allele. Steatosis was more frequent (Odds ratio = 1.764, 95% C.I. 1.053-2.955) and severe (P = 0.026) in carriers of the rs12979860T allele. No relation was found between the analysed SNP and METAVIR scores for necroinflammation and fibrosis, and there were no differences in the distribution of the analysed SNP between hepatocellular carcinoma and untreated chronic hepatitis C patients. CONCLUSION: The IL28B rs12979860 polymorphism correlates with the biochemical activity and the presence and severity of liver steatosis in chronic hepatitis C

    Substrate Adhesion Regulates Sealing Zone Architecture and Dynamics in Cultured Osteoclasts

    Get PDF
    The bone-degrading activity of osteoclasts depends on the formation of a cytoskeletal-adhesive super-structure known as the sealing zone (SZ). The SZ is a dynamic structure, consisting of a condensed array of podosomes, the elementary adhesion-mediating structures of osteoclasts, interconnected by F-actin filaments. The molecular composition and structure of the SZ were extensively investigated, yet despite its major importance for bone formation and remodelling, the mechanisms underlying its assembly and dynamics are still poorly understood. Here we determine the relations between matrix adhesiveness and the formation, stability and expansion of the SZ. By growing differentiated osteoclasts on micro-patterned glass substrates, where adhesive areas are separated by non-adhesive PLL-g-PEG barriers, we show that SZ growth and fusion strictly depend on the continuity of substrate adhesiveness, at the micrometer scale. We present a possible model for the role of mechanical forces in SZ formation and reorganization, inspired by the current data
    corecore