254 research outputs found

    Gene regulation knowledge commons: community action takes care of DNA binding transcription factors

    Get PDF
    A large gap remains between the amount of knowledge in scientific literature and the fraction that gets curated into standardized databases, despite many curation initiatives. Yet the availability of comprehensive knowledge in databases is crucial for exploiting existing background knowledge, both for designing follow-up experiments and for interpreting new experimental data. Structured resources also underpin the computational integration and modeling of regulatory pathways, which further aids our understanding of regulatory dynamics. We argue how cooperation between the scientific community and professional curators can increase the capacity of capturing precise knowledge from literature. We demonstrate this with a project in which we mobilize biological domain experts who curate large amounts of DNA binding transcription factors, and show that they, although new to the field of curation, can make valuable contributions by harvesting reported knowledge from scientific papers. Such community curation can enhance the scientific epistemic process.Database URL: http://www.tfcheckpoint.org

    In the Shadow of the Transiting Disk: Imaging epsilon Aurigae in Eclipse

    Full text link
    Eclipses of the single-line spectroscopic binary star, epsilon Aurigae, provide an opportunity to study the poorly-defined companion. We used the MIRC beam combiner on the CHARA array to create interferometric images during eclipse ingress. Our results demonstrate that the eclipsing body is a dark disk that is opaque and tilted, and therefore exclude alternative models for the system. These data constrain the geometry and masses of the components, providing evidence that the F-star is not a massive supergiant star.Comment: As submitted to Nature. Published in Nature April 8, 2010

    Gamma-rays from millisecond pulsars in Globular Clusters

    Full text link
    Globular clusters (GCs) with their ages of the order of several billion years contain many final products of evolution of stars such as: neutron stars, white dwarfs and probably also black holes. These compact objects can be at present responsible for the acceleration of particles to relativistic energies. Therefore, gamma-ray emission is expected from GCs as a result of radiation processes occurring either in the inner magnetosperes of millisecond pulsars or in the vicinity of accreting neutron stars and white dwarfs or as a result of interaction of particles leaving the compact objects with the strong radiation field within the GC. Recently, GeV gamma-ray emission has been detected from several GCs by the new satellite observatory Fermi. Also Cherenkov telescopes reported interesting upper limits at the TeV energies which start to constrain the content of GCs. We review the results of these gamma-ray observations in the context of recent scenarios for their origin.Comment: 20 pages, 9 figures, will be published in Astrophysics and Space Science Series (Springer), eds. N. Rea and D.F. Torre

    The Origin and Nature of Tightly Clustered BTG1 Deletions in Precursor B-Cell Acute Lymphoblastic Leukemia Support a Model of Multiclonal Evolution

    Get PDF
    Recurrent submicroscopic deletions in genes affecting key cellular pathways are a hallmark of pediatric acute lymphoblastic leukemia (ALL). To gain more insight into the mechanism underlying these deletions, we have studied the occurrence and nature of abnormalities in one of these genes, the B-cell translocation gene 1 (BTG1), in a large cohort of pediatric ALL cases. BTG1 was found to be exclusively affected by genomic deletions, which were detected in 65 out of 722 B-cell precursor ALL (BCP-ALL) patient samples (9%), but not in 109 T-ALL cases. Eight different deletion sizes were identified, which all clustered at the telomeric site in a hotspot region within the second (and last) exon of the BTG1 gene, resulting in the expression of truncated BTG1 read-through transcripts. The presence of V(D)J recombination signal sequences at both sites of virtually all deletions strongly suggests illegitimate RAG1/RAG2-mediated recombination as the responsible mechanism. Moreover, high levels of histone H3 lysine 4 trimethylation (H3K4me3), which is known to tether the RAG enzyme complex to DNA, were found within the BTG1 gene body in BCP-ALL cells, but not T-ALL cells. BTG1 deletions were rarely found in hyperdiploid BCP-ALLs, but were predominant in other cytogenetic subgroups, including the ETV6-RUNX1 and BCR-ABL1 positive BCP-ALL subgroups. Through sensitive PCR-based screening, we identified multiple additional BTG1 deletions at the subclonal level in BCP-ALL, with equal cytogenetic distribution which, in some cases, grew out into the major clone at relapse. Taken together, our results indicate that BTG1 deletions may act as “drivers” of leukemogenesis in specific BCP-ALL subgroups, in which they can arise independently in multiple subclones at sites that are prone to aberrant RAG1/RAG2-mediated recombination events. These findings provide further evidence for a complex and multiclonal evolution of ALL

    Clinical characteristics and outcomes of children with WAGR syndrome and Wilms tumor and/or nephroblastomatosis: The 30-year SIOP-RTSG experience

    Get PDF
    BACKGROUND: WAGR syndrome (Wilms tumor, aniridia, genitourinary anomalies, and range of developmental delays) is a rare contiguous gene deletion syndrome with a 45% to 60% risk of developing Wilms tumor (WT). Currently, surveillance and treatment recommendations are based on limited evidence. METHODS: Clinical characteristics, treatments, and outcomes were analyzed for patients with WAGR and WT/nephroblastomatosis who were identified through International Society of Pediatric Oncology Renal Tumor Study Group (SIOP-RTSG) registries and the SIOP-RTSG network (1989-2019). Events were defined as relapse, metachronous tumors, or death. RESULTS: Forty-three patients were identified. The median age at WT/nephroblastomatosis diagnosis was 22 months (range, 6-44 months). The overall stage was available for 40 patients, including 15 (37.5%) with bilateral disease and none with metastatic disease. Histology was available for 42 patients; 6 nephroblastomatosis without further WT and 36 WT, including 19 stromal WT (52.8%), 12 mixed WT (33.3%), 1 regressive WT (2.8%) and 2 other/indeterminable WT (5.6%). Blastemal type WT occurred in 2 patients (5.6%) after prolonged treatment for nephroblastomatosis; anaplasia was not reported. Nephrogenic rests were present in 78.9%. Among patients with WT, the 5-year event-free survival rate was 84.3% (95% confidence interval, 72.4%-98.1%), and the overall survival rate was 91.2% (95% confidence interval, 82.1%-100%). Events (n = 6) did not include relapse, but contralateral tumor development (n = 3) occurred up to 7 years after the initial diagnosis, and 3 deaths were related to hepatotoxicity (n = 2) and obstructive ileus (n = 1). CONCLUSIONS: Patients with WAGR have a high rate of bilateral disease and no metastatic or anaplastic tumors. Although they can be treated according to existing WT protocols, intensive monitoring of toxicity and surveillance of the remaining kidney(s) are advised. LAY SUMMARY: WAGR syndrome (Wilms tumor, aniridia, genitourinary anomalies, and range of developmental delays) is a rare genetic condition with an increased risk of developing Wilms tumor. In this study, 43 patients with WAGR and Wilms tumor (or Wilms tumor precursor lesions/nephroblastomatosis) were identified through the international registry of the International Society of Pediatric Oncology Renal Tumor Study Group (SIOP-RTSG) and the SIOP-RTSG network. In many patients (37.5%), both kidneys were affected. Disease spread to other organs (metastases) did not occur. Overall, this study demonstrates that patients with WAGR syndrome and Wilms tumor can be treated according to existing protocols. However, intensive monitoring of treatment complications and surveillance of the remaining kidney(s) are advised

    Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation

    Get PDF
    Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome

    Surveillance Recommendations for Children with Overgrowth Syndromes and Predisposition to Wilms Tumors and Hepatoblastoma

    Get PDF
    A number of genetic syndromes have been linked to increased risk for Wilms tumor (WT), hepatoblastoma (HB), and other embryonal tumors. Here, we outline these rare syndromes with at least a 1% risk to develop these tumors and recommend uniform tumor screening recommendations for North America. Specifically, for syndromes with increased risk for WT, we recommend renal ultrasounds every 3 months from birth (or the time of diagnosis) through the seventh birthday. For HB, we recommend screening with full abdominal ultrasound and alpha-fetoprotein serum measurements every 3 months from birth (or the time of diagnosis) through the fourth birthday. We recommend that when possible, these patients be evaluated and monitored by cancer predisposition specialists. At this time, these recommendations are not based on the differential risk between different genetic or epigenetic causes for each syndrome, which some European centers have implemented. This differentiated approach largely represents distinct practice environments between the United States and Europe, and these guidelines are designed to be a broad framework within which physicians and families can work together to implement specific screening. Further study is expected to lead to modifications of these recommendations.This study was supported by NCI K08 CA1939915, Alex's Lemonade Stand Foundation for Childhood Cancer, and St. Baldrick's Foundation (to J.M. Kalish); European Research Council Advanced Researcher Award (to E.R. Maher); and NCI 5P30CA054174-21 (to G.E. Tomlinson)
    corecore