312 research outputs found

    Neural Mechanisms of Auditory Species Recognition in Birds

    Get PDF

    Accuracy of an acoustic location system for monitoring the position of duetting songbirds in tropical forest

    Get PDF
    A field test was conducted on the accuracy of an eight-microphone acoustic location system designed to triangulate the position of duetting rufous-and-white wrens (Thryothorus rufalbus) in Costa Rica\u27s humid evergreen forest. Eight microphones were set up in the breeding territories of 20 pairs of wrens, with an average intermicrophone distance of 75.2±2.6 m. The array of microphones was used to record antiphonal duets broadcast through stereo loudspeakers. The positions of the loudspeakers were then estimated by evaluating the delay with which the eight microphones recorded the broadcast sounds. Position estimates were compared to coordinates surveyed with a global-positioning system (GPS). The acoustic location system estimated the position of loudspeakers with an error of 2.82±0.26 m and calculated the distance between the male and female loudspeakers with an error of 2.12±0.42 m. Given the large range of distances between duetting birds, this relatively low level of error demonstrates that the acoustic location system is a useful tool for studying avian duets. Location error was influenced partly by the difficulties inherent in collecting high accuracy GPS coordinates of microphone positions underneath a lush tropical canopy and partly by the complicating influence of irregular topography and thick vegetation on sound transmission. © 2006 Acoustical Society of America

    Hotspots of Unseen Fishing Vessels Illuminate Areas of Concern for Illegal, Unreported and Unregulated Fishing

    Get PDF
    Illegal, unreported, and unregulated (IUU) fishing incurs an annual cost of up to US$25 billion in economic losses, results in substantial losses of aquatic life, and has been linked to human rights violations. Vessel tracking data from the automatic identification system (AIS) are powerful tools for combating IUU, yet AIS transponders can be disabled, reducing its efficacy as a surveillance tool. We present a global dataset of AIS disabling in commercial fisheries, which obscures up to 6% (\u3e4.9 M hours) of vessel activity. Disabling hot spots were located near the exclusive economic zones (EEZs) of Argentina and West African nations and in the Northwest Pacific, all regions of IUU concern. Disabling was highest near transshipment hot spots and near EEZ boundaries, particularly contested ones. We also found links between disabling and location hiding from competitors and pirates. These inferences on where and why activities are obscured provide valuable information to improve fisheries management

    Context-dependent changes in maritime traffic activity during the first year of the COVID-19 pandemic

    Get PDF
    This article is a contribution of the COVID-19 Bio-Logging Initiative, which is funded in part by the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society (NGS-82515R-20) (both grants to C.R.), and endorsed by the United Nations Decade of Ocean Science for Sustainable Development. Specifically, A.L.’s, R.P.’s and B.R.’s postdoctoral positions were funded by the Gordon and Betty Moore Foundation (GBMF9881), and J.S.’s contributions were funded by the National Geographic Society (NGS-82515R-20). D.W.S. was supported by a Marine Biological Association Senior Research Fellowship with additional support from the Natural Environment Research Council (Discovery Science NE/R00997/X/1) and the European Research Council (Advanced Grant 883583 OCEAN DEOXYFISH).Rapid implementation of human mobility restrictions during the COVID-19 pandemic dramatically reduced maritime activity in early 2020. But where and when activity rebounded, or remained low, during the full extent of 2020 restrictions remains unclear. Using global high-resolution datasets, we reveal a surprising degree of complexity in maritime activity patterns during 2020, yielding a more nuanced picture of how restrictions affected activity. Overall, shipping activity in Exclusive Economic Zones decreased (1.35 %), as expected, however high-seas activity increased (0.28 %). While these annual changes appear modest, there were striking spatially and temporally asynchronous variations in different vessel types’ activity in the second half of 2020, ranging from an > 80 % sustained reduction in passenger vessel activity to a 150 % increase in fishing activity. Results suggest systems-level responses were highly context-dependent, pinpointing areas that experienced significant reductions and spikes in activity, and providing hitherto missing details of COVID-19 impacts on economic and environmental sustainability.Publisher PDFPeer reviewe

    The function of three main call types in common cuckoo

    Get PDF
    Acoustic signals play a key role in shaping the relationships in birds. Common cuckoos Cuculus canorus are known to produce various call types, but the function of these calls has only been studied recently. Here, we used a combination of field recordings (conducted in 2017) and playback experiments (conducted in 2018) to investigate the functional significance of common cuckoo calls. We found significant differences in the characteristics between male two-element ‘cu-coo’ and three-element ‘cu-cu-coo’ calls, with these two call types being used in different contexts. The three-element male ‘cu-cu-coo’ calls were associated with females emitting their ‘bubbling’ call. Playback experiments revealed that both males and females exhibit stronger responses to playing female “bubbling” calls than with the calls of Eurasian sparrowhawk (Accipter nisus) serving as a control suggesting a significant intraspecific communication function for this call type. However, we did not find any evidence to support mate attraction in male calls, as females were not stimulated by playback of male calls compared to sparrowhawk calls in the control group

    ‘O sibling, where art thou?’ – a review of avian sibling recognition with respect to the mammalian literature

    Get PDF
    Avian literature on sibling recognition is rare compared to that developed by mammalian researchers. We compare avian and mammalian research on sibling recognition to identify why avian work is rare, how approaches differ and what avian and mammalian researchers can learn from each other. Three factors: (1) biological differences between birds and mammals, (2) conceptual biases and (3) practical constraints, appear to influence our current understanding. Avian research focuses on colonial species because sibling recognition is considered adaptive where ‘mixing potential’ of dependent young is high; research on a wider range of species, breeding systems and ecological conditions is now needed. Studies of acoustic recognition cues dominate avian literature; other types of cues (e.g. visual, olfactory) deserve further attention. The effect of gender on avian sibling recognition has yet to be investigated; mammalian work shows that gender can have important influences. Most importantly, many researchers assume that birds recognise siblings through ‘direct familiarisation’ (commonly known as associative learning or familiarity); future experiments should also incorporate tests for ‘indirect familiarisation’ (commonly known as phenotype matching). If direct familiarisation proves crucial, avian research should investigate how periods of separation influence sibling discrimination. Mammalian researchers typically interpret sibling recognition in broad functional terms (nepotism, optimal outbreeding); some avian researchers more successfully identify specific and testable adaptive explanations, with greater relevance to natural contexts. We end by reporting exciting discoveries from recent studies of avian sibling recognition that inspire further interest in this topic

    Estimating Fuel Cycle Externalities: Analytical Methods and Issues, Report 2

    Get PDF
    The activities that produce electric power typically range from extracting and transporting a fuel, to its conversion into electric power, and finally to the disposition of residual by-products. This chain of activities is called a fuel cycle. A fuel cycle has emissions and other effects that result in unintended consequences. When these consequences affect third parties (i.e., those other than the producers and consumers of the fuel-cycle activity) in a way that is not reflected in the price of electricity, they are termed ''hidden'' social costs or externalities. They are the economic value of environmental, health and any other impacts, that the price of electricity does not reflect. How do you estimate the externalities of fuel cycles? Our previous report describes a methodological framework for doing so--called the damage function approach. This approach consists of five steps: (1) characterize the most important fuel cycle activities and their discharges, where importance is based on the expected magnitude of their externalities, (2) estimate the changes in pollutant concentrations or other effects of those activities, by modeling the dispersion and transformation of each pollutant, (3) calculate the impacts on ecosystems, human health, and any other resources of value (such as man-made structures), (4) translate the estimates of impacts into economic terms to estimate damages and benefits, and (5) assess the extent to which these damages and benefits are externalities, not reflected in the price of electricity. Each step requires a different set of equations, models and analysis. Analysts generally believe this to be the best approach for estimating externalities, but it has hardly been used! The reason is that it requires considerable analysis and calculation, and to this point in time, the necessary equations and models have not been assembled. Equally important, the process of identifying and estimating externalities leads to a number of complex issues that also have not been fully addressed. This document contains two types of papers that seek to fill part of this void. Some of the papers describe analytical methods that can be applied to one of the five steps of the damage function approach. The other papers discuss some of the complex issues that arise in trying to estimate externalities. This report, the second in a series of eight reports, is part of a joint study by the U.S. Department of Energy (DOE) and the Commission of the European Communities (EC)* on the externalities of fuel cycles. Most of the papers in this report were originally written as working papers during the initial phases of this study. The papers provide descriptions of the (non-radiological) atmospheric dispersion modeling that the study uses; reviews much of the relevant literature on ecological and health effects, and on the economic valuation of those impacts; contains several papers on some of the more complex and contentious issues in estimating externalities; and describes a method for depicting the quality of scientific information that a study uses. The analytical methods and issues that this report discusses generally pertain to more than one of the fuel cycles, though not necessarily to all of them. The report is divided into six parts, each one focusing on a different subject area
    corecore