40 research outputs found

    With appropriate force:Use of Force by the Politie in the Netherland in 2016

    Get PDF

    On the Size and Comoving Mass Density Evolution of Early-Type Galaxies

    Get PDF
    We present a simple, empirically motivated model that simultaneously predicts the evolution of the mean size and the comoving mass density of massive early-type galaxies from z=2 to the present. First we demonstrate that some size evolution of the population can be expected simply due to the continuous emergence of early-type galaxies. SDSS data reveal that in the present-day universe more compact early-type galaxies with a given dynamical mass have older stellar populations. In contrast, at a given stellar velocity dispersion, SDSS data show that there is no relation between size and age, which implies that the velocity dispersion can be used to estimate the epoch at which galaxies stopped forming stars, turning into early-type galaxies. Applying such a 'formation' criterion to a large sample of nearby early-type galaxies, we predict the redshift evolution in the size distribution and the comoving mass density. The resulting evolution in the mean size is roughly half of the observed evolution. Then we include a prescription for the merger histories of galaxies between the 'formation' redshift and the present, based on cosmological simulations of the assembly of dark matter halos. Such mergers after the transformation into an early-type galaxy are presumably dissipationless ('dry'), where the increase in size is expected to be approximately proportional to the increase in mass. This model successfully reproduces the observed evolution since z~2 in the mean size and in the comoving mass density of massive early-type galaxies. We conclude that the recently measured, substantial size evolution of early-type galaxies can be explained by the combined effect of the continuous emergence of galaxies as early types and their subsequent growth through dry merging.Comment: Accepted for publication in ApJ (13 pages, 5 figures), small changes to match journal versio

    Next-generation sequencing-based genome diagnostics across clinical genetics centers: Implementation choices and their effects

    Get PDF
    Implementation of next-generation DNA sequencing (NGS) technology into routine diagnostic genome care requires strategic choices. Instead of theoretical discussions on the consequences of such choices, we compared NGS-based diagnostic practices in eight clinical genetic centers in the Netherlands, based on genetic testing of nine pre-selected patients with cardiomyopathy. We highlight critical implementation choices, including the specific contributions of laboratory and medical specialists, bioinformaticians and researchers to diagnostic genome care, and how these affect interpretation and reporting of variants. Reported pathogenic mutations were consistent for all but one patient. Of the two centers that were inconsistent in their diagnosis, one reported to have found 'no causal variant', thereby underdiagnosing this patient. The other provided an alternative diagnosis, identifying another variant as causal than the other centers. Ethical and legal analysis showed that informed consent procedures in all centers were generally adequate for diagnostic NGS applications that target a limited set of genes, but not for exome- and genome-based diagnosis. We propose changes to further improve and align these procedures, taking into account the blurring boundary between diagnostics and research, and specific counseling options for exome- and genome-based diagnostics. We conclude that alternative diagnoses may infer a certain level of 'greediness' to come to a positive diagnosis in interpreting sequencing results. Moreover, there is an increasing interdependence of clinic, diagnostics and research departments for comprehensive diagnostic genome care. Therefore, we invite clinical geneticists, physicians, researchers, bioinformatics experts and patients to reconsider their role and position in future diagnostic genome care

    Comparative Transcriptional and Genomic Analysis of Plasmodium falciparum Field Isolates

    Get PDF
    Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs). Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment

    Absence of fast-moving iron in an intermediate type ia supernova between normal and super-chandrasekhar

    Get PDF
    The American Astronomical Society. All rights reserved.In this paper, we report observations of a peculiar SN Ia iPTF13asv (a.k.A., SN2013cv) from the onset of the explosion to months after its peak. The early-phase spectra of iPTF13asv show an absence of iron absorption, indicating that synthesized iron elements are confined to low-velocity regions of the ejecta, which, in turn, implies a stratified ejecta structure along the line of sight. Our analysis of iPTF13asv's light curves and spectra shows that it is an intermediate case between normal and super-Chandrasekhar events. On the one hand, its light curve shape (B-band ) and overall spectral features resemble those of normal SNe Ia. On the other hand, its large peak optical and UV luminosity (, ) and its low but almost constant Si ii velocities of about 10,000 km s-1 are similar to those in super-Chandrasekhar events, and its persistent carbon signatures in the spectra are weaker than those seen commonly in super-Chandrasekhar events. We estimate a 56Ni mass of and a total ejecta mass of . The large ejecta mass of iPTF13asv and its stratified ejecta structure together seemingly favor a double-degenerate origin. © 2016

    The SARAO MeerKAT 1.3 GHz Galactic Plane Survey

    Get PDF
    We present the SARAO MeerKAT Galactic Plane Survey (SMGPS), a 1.3 GHz continuum survey of almost half of the Galactic Plane (251○ ≤l ≤ 358○ and 2○ ≤l ≤ 61○ at |b| ≤ 1 5). SMGPS is the largest, most sensitive and highest angular resolution 1 GHz survey of the Plane yet carried out, with an angular resolution of 8″ and a broadband RMS sensitivity of ∼10–20 μJy beam−1. Here we describe the first publicly available data release from SMGPS which comprises data cubes of frequency-resolved images over 908–1656 MHz, power law fits to the images, and broadband zeroth moment integrated intensity images. A thorough assessment of the data quality and guidance for future usage of the data products are given. Finally, we discuss the tremendous potential of SMGPS by showcasing highlights of the Galactic and extragalactic science that it permits. These highlights include the discovery of a new population of non-thermal radio filaments; identification of new candidate supernova remnants, pulsar wind nebulae and planetary nebulae; improved radio/mid-IR classification of rare Luminous Blue Variables and discovery of associated extended radio nebulae; new radio stars identified by Bayesian cross-matching techniques; the realisation that many of the largest radio-quiet WISE H II region candidates are not true H II regions; and a large sample of previously undiscovered background H I galaxies in the Zone of Avoidance

    The 1.28 GHz MeerKAT DEEP2 Image

    Get PDF
    We present the confusion-limited 1.28 GHz MeerKAT DEEP2 image covering one qb » ¢ 68 FWHM primarybeam area with θ = 7 6 FWHM resolution and s = m - n 0.55 0.01 Jy beam 1 rms noise. Its J2000 center position α = 04h 13m 26 4, δ = −80° 00′ 00″ was selected to minimize artifacts caused by bright sources. We introduce the new 64-element MeerKAT array and describe commissioning observations to measure the primary-beam attenuation pattern, estimate telescope pointing errors, and pinpoint (u, v) coordinate errors caused by offsets in frequency or time. We constructed a 1.4 GHz differential source count by combining a power-law count fit to the DEEP2 confusion P(D) distribution from 0.25 to 10 μJy with counts of individual DEEP2 sources between 10 μJy and 2.5 mJy. Most sources fainter than S ∼ 100 μJy are distant star-forming galaxies (SFGs) obeying the far-IR/ radio correlation, and sources stronger than 0.25 μJy account for ∼93% of the radio background produced by SFGs. For the first time, the DEEP2 source count has reached the depth needed to reveal the majority of the star formation history of the universe. A pure luminosity evolution of the 1.4 GHz local luminosity function consistent with the Madau & Dickinson model for the evolution of SFGs based on UV and infrared data underpredicts our 1.4 GHz source count in the range -5 log Jy 4 [ ( )] S

    The MeerKAT Galaxy Cluster Legacy Survey: I. Survey overview and highlights

    Get PDF
    Please abstract in the article.The South African Radio Astronomy Observatory (SARAO), the National Research Foundation (NRF), the National Radio Astronomy Observatory, US National Science Foundation, the South African Research Chairs Initiative of the DSI/NRF, the SARAO HCD programme, the South African Research Chairs Initiative of the Department of Science and Innovation.http://www.aanda.orghj2022Physic
    corecore