38 research outputs found
Recommended from our members
Meta-analysis of massively parallel reporter assays enables prediction of regulatory function across cell types.
Deciphering the potential of noncoding loci to influence gene regulation has been the subject of intense research, with important implications in understanding genetic underpinnings of human diseases. Massively parallel reporter assays (MPRAs) can measure regulatory activity of thousands of DNA sequences and their variants in a single experiment. With increasing number of publically available MPRA data sets, one can now develop data-driven models which, given a DNA sequence, predict its regulatory activity. Here, we performed a comprehensive meta-analysis of several MPRA data sets in a variety of cellular contexts. We first applied an ensemble of methods to predict MPRA output in each context and observed that the most predictive features are consistent across data sets. We then demonstrate that predictive models trained in one cellular context can be used to predict MPRA output in another, with loss of accuracy attributed to cell-type-specific features. Finally, we show that our approach achieves top performance in the Fifth Critical Assessment of Genome Interpretation "Regulation Saturation" Challenge for predicting effects of single-nucleotide variants. Overall, our analysis provides insights into how MPRA data can be leveraged to highlight functional regulatory regions throughout the genome and can guide effective design of future experiments by better prioritizing regions of interest
Co-regulated Transcripts Associated to Cooperating eSNPs Define Bi-fan Motifs in Human Gene Networks
Associations between the level of single transcripts and single corresponding genetic variants, expression single nucleotide polymorphisms (eSNPs), have been extensively studied and reported. However, most expression traits are complex, involving the cooperative action of multiple SNPs at different loci affecting multiple genes. Finding these cooperating eSNPs by exhaustive search has proven to be statistically challenging. In this paper we utilized availability of sequencing data with transcriptional profiles in the same cohorts to identify two kinds of usual suspects: eSNPs that alter coding sequences or eSNPs within the span of transcription factors (TFs). We utilize a computational framework for considering triplets, each comprised of a SNP and two associated genes. We examine pairs of triplets with such cooperating source eSNPs that are both associated with the same pair of target genes. We characterize such quartets through their genomic, topological and functional properties. We establish that this regulatory structure of cooperating quartets is frequent in real data, but is rarely observed in permutations. eSNP sources are mostly located on different chromosomes and away from their targets. In the majority of quartets, SNPs affect the expression of the two gene targets independently of one another, suggesting a mutually independent rather than a directionally dependent effect. Furthermore, the directions in which the minor allele count of the SNP affects gene expression within quartets are consistent, so that the two source eSNPs either both have the same effect on the target genes or both affect one gene in the opposite direction to the other. Same-effect eSNPs are observed more often than expected by chance. Cooperating quartets reported here in a human system might correspond to bi-fans, a known network motif of four nodes previously described in model organisms. Overall, our analysis offers insights regarding the fine motif structure of human regulatory networks
Recommended from our members
Analysis of trans eSNPs infers regulatory network architecture
eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality.
This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation. Overall, our work offers insights concerning the topological structure of human regulatory networks and the role genetics plays in shaping them
Recommended from our members
MPRAnalyze: statistical framework for massively parallel reporter assays.
Massively parallel reporter assays (MPRAs) can measure the regulatory function of thousands of DNA sequences in a single experiment. Despite growing popularity, MPRA studies are limited by a lack of a unified framework for analyzing the resulting data. Here we present MPRAnalyze: a statistical framework for analyzing MPRA count data. Our model leverages the unique structure of MPRA data to quantify the function of regulatory sequences, compare sequences' activity across different conditions, and provide necessary flexibility in an evolving field. We demonstrate the accuracy and applicability of MPRAnalyze on simulated and published data and compare it with existing methods
Recommended from our members
Variants in exons and in transcription factors affect gene expression in trans
Background: In recent years many genetic variants (eSNPs) have been reported as associated with expression of transcripts in trans. However, the causal variants and regulatory mechanisms through which they act remain mostly unknown. In this paper we follow two kinds of usual suspects: SNPs that alter coding regions or transcription factors, identifiable by sequencing data with transcriptional profiles in the same cohort. We show these interpretable genomic regions are enriched for eSNP association signals, thereby naturally defining source-target gene pairs. We map these pairs onto a protein-protein interaction (PPI) network and study their topological properties. Results: For exonic eSNP sources, we report source-target proximity and high target degree within the PPI network. These pairs are more likely to be co-expressed and the eSNPs tend to have a cis effect, modulating the expression of the source gene. In contrast, transcription factor source-target pairs are not observed to have such properties, but instead a transcription factor source tends to assemble into units of defined functional roles along with its gene targets, and to share with them the same functional cluster of the PPI network. Conclusions: Our results suggest two modes of trans regulation: transcription factor variation frequently acts via a modular regulation mechanism, with multiple targets that share a function with the transcription factor source. Notwithstanding, exon variation often acts by a local cis effect, delineating shorter paths of interacting proteins across functional clusters of the PPI network
Metabolic-network-driven analysis of bacterial ecological strategies
Bacterial ecological strategies revealed by metabolic network analysis show that ecological diversity correlates with metabolic flexibility, faster growth rate and intense co-habitation
Recommended from our members
Integration of multiple epigenomic marks improves prediction of variant impact in saturation mutagenesis reporter assay
The integrative analysis of highâ throughput reporter assays, machine learning, and profiles of epigenomic chromatin state in a broad array of cells and tissues has the potential to significantly improve our understanding of noncoding regulatory element function and its contribution to human disease. Here, we report results from the CAGI 5 regulation saturation challenge where participants were asked to predict the impact of nucleotide substitution at every base pair within five diseaseâ associated human enhancers and nine diseaseâ associated promoters. A library of mutations covering all bases was generated by saturation mutagenesis and altered activity was assessed in a massively parallel reporter assay (MPRA) in relevant cell lines. Reporter expression was measured relative to plasmid DNA to determine the impact of variants. The challenge was to predict the functional effects of variants on reporter expression. Comparative analysis of the full range of submitted prediction results identifies the most successful models of transcription factor binding sites, machine learning algorithms, and ways to choose among or incorporate diverse datatypes and cellâ types for training computational models. These results have the potential to improve the design of future studies on more diverse sets of regulatory elements and aid the interpretation of diseaseâ associated genetic variation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151884/1/humu23797_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151884/2/humu23797.pd
The large-scale organization of the bacterial network of ecological co-occurrence interactions
In their natural environments, microorganisms form complex systems of interactions. Understating the structure and organization of bacterial communities is likely to have broad medical and ecological consequences, yet a comprehensive description of the network of environmental interactions is currently lacking. Here, we mine co-occurrences in the scientific literature to construct such a network and demonstrate an expected pattern of association between the species’ lifestyle and the recorded number of co-occurring partners. We further focus on the well-annotated gut community and show that most co-occurrence interactions of typical gut bacteria occur within this community. The network is then clustered into species-groups that significantly correspond with natural occurring communities. The relationships between resource competition, metabolic yield and growth rate within the clusters correspond with the r/K selection theory. Overall, these results support the constructed clusters as a first approximation of a bacterial ecosystem model. This comprehensive collection of predicted communities forms a new data resource for further systematic characterization of the ecological design principals shaping communities. Here, we demonstrate its utility for predicting cooperation and inhibition within communities
Decoupling Environment-Dependent and Independent Genetic Robustness across Bacterial Species
The evolutionary origins of genetic robustness are still under debate: it may arise as a consequence of requirements imposed by varying environmental conditions, due to intrinsic factors such as metabolic requirements, or directly due to an adaptive selection in favor of genes that allow a species to endure genetic perturbations. Stratifying the individual effects of each origin requires one to study the pertaining evolutionary forces across many species under diverse conditions. Here we conduct the first large-scale computational study charting the level of robustness of metabolic networks of hundreds of bacterial species across many simulated growth environments. We provide evidence that variations among species in their level of robustness reflect ecological adaptations. We decouple metabolic robustness into two components and quantify the extents of each: the first, environmental-dependent, is responsible for at least 20% of the non-essential reactions and its extent is associated with the species' lifestyle (specialized/generalist); the second, environmental-independent, is associated (correlation = ∼0.6) with the intrinsic metabolic capacities of a species—higher robustness is observed in fast growers or in organisms with an extensive production of secondary metabolites. Finally, we identify reactions that are uniquely susceptible to perturbations in human pathogens, potentially serving as novel drug-targets
Impact of Pre-adapted HIV Transmission
Human Leukocyte Antigen class I (HLA) restricted CD8+ T lymphocyte (CTL) responses are critical to HIV-1 control. Although HIV can evade these responses, the longer-term impact of viral escape mutants remains unclear, since these variants can also reduce intrinsic viral fitness. To address this question, we here develop a metric to determine the degree of HIV adaptation to an HLA profile. We demonstrate that transmission of viruses pre-adapted to the HLA molecules expressed in the recipient is associated with impaired immunogenicity, elevated viral load and accelerated CD4 decline. Furthermore, the extent of pre-adaptation among circulating viruses explains much of the variation in outcomes attributed to expression of certain HLA alleles. Thus, viral pre-adaptation exploits “holes” in the immune response. Accounting for these holes may be critical for vaccine strategies seeking to elicit functional responses from viral variants, and to HIV cure strategies requiring broad CTL responses to achieve successful eradication of HIV reservoirs