24 research outputs found

    Solid state high power RF system for superconducting cavities

    Get PDF
    Solid State High Power RF System is proposed for XFEL and ILC. It includes individual RF power supply for each SC cavity and common control system. Each RF power supply includes Solid State Generator, circulator and Q-tuner. Triggering, synchronization, output power and phase of each Solid State Generator are controlled from the common control system through fiber-optic lines. Main parameters of Solid State Generator are: frequency 1.3 GHz, peak power 128 kW, pulse length 1.4 msec, repetition rate 10 Hz, average power 1.8 kW, CW power 2.5 kW. Advantages of Solid State High Power RF System are: simple triggering, synchronization, output power and phase adjustment for all cavities separately, operation both in pulse and in CW modes, unlimited lifetime, no high voltage, no oil-tank, compactness.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Π‘Π’Π§-систСмы питания для ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΎΠ² XFEL ΠΈ ILC, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΉ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΉ источник питания для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ БП-Ρ€Π΅Π·ΠΎΠ½Π°Ρ‚ΠΎΡ€Π° ΠΈ ΠΎΠ±Ρ‰ΡƒΡŽ систСму управлСния. ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ источник питания содСрТит Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€, циркулятор ΠΈ систСму подстройки добротности. ΠŸΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅, синхронизация, выходная ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ„Π°Π·Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΎΠ±Ρ‰Π΅ΠΉ систСмой управлСния ΠΏΠΎ срСдствам ΠΎΠΏΡ‚ΠΎΠ²ΠΎΠ»ΠΎΠΊΠΎΠ½Π½ΠΎΠ³ΠΎ кабСля. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π°: частота 1,3 Π“Π“Ρ†, пиковая ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ 128 ΠΊΠ’Ρ‚, Π΄Π»ΠΈΠ½Π° ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° 1,4 мс, частота повторСния 10 Π“Ρ†, срСдняя ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ 1,8 ΠΊΠ’Ρ‚, нСпрСрывная ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ 2,5 ΠΊΠ’Ρ‚. ΠŸΡ€Π΅ΠΈΠΌΡƒΡ‰Π΅ΡΡ‚Π²Π° Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π‘Π’Π§-систСмы питания: простыС ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠΈ синхронизация, Ρ€Π°Π·Π΄Π΅Π»ΡŒΠ½Π°Ρ подстройка Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠΉ мощности ΠΈ Ρ„Π°Π·Ρ‹ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ρ€Π΅Π·ΠΎΠ½Π°Ρ‚ΠΎΡ€Π°, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΊΠ°ΠΊ Π² ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠΌ, Ρ‚Π°ΠΊ ΠΈ Π² Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅, Π½Π΅ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΉ срок слуТбы, отсутствиС высокого напряТСния ΠΈ масляного Π±Π°ΠΊΠ°, ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½ΠΎΡΡ‚ΡŒ.Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Ρ–Π»ΡŒΠ½ΠΈΠΉ Π²Π°Ρ€Ρ–Π°Π½Ρ‚ НВЧ-систСми ТивлСння для ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Ρ–Π² XFEL Ρ– Π†LC, Ρ‰ΠΎ Π²ΠΊΠ»ΡŽΡ‡Π°Ρ” Ρ–Π½Π΄ΠΈΠ²Ρ–Π΄ΡƒΠ°Π»ΡŒΠ½Π΅ Π΄ΠΆΠ΅Ρ€Π΅Π»ΠΎ ТивлСння для ΠΊΠΎΠΆΠ½ΠΎΠ³ΠΎ НП-Ρ€Π΅Π·ΠΎΠ½Π°Ρ‚ΠΎΡ€Π° Ρ– Π·Π°Π³Π°Π»ΡŒΠ½Ρƒ систСму кСрування. КоТнС Π΄ΠΆΠ΅Ρ€Π΅Π»ΠΎ ТивлСння ΠΌΡ–ΡΡ‚ΠΈΡ‚ΡŒ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Ρ–Π»ΡŒΠ½ΠΈΠΉ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€, циркулятор Ρ– систСму ΠΏΡ–Π΄ΡΡ‚Ρ€ΠΎΡŽΠ²Π°Π½Π½Ρ добротності. ΠŸΠ΅Ρ€Π΅ΠΌΠΈΠΊΠ°Π½Π½Ρ, синхронізація, Π²ΠΈΡ…Ρ–Π΄Π½Π° ΠΏΠΎΡ‚ΡƒΠΆΠ½Ρ–ΡΡ‚ΡŒ Ρ– Ρ„Π°Π·Π° ΠΊΠΎΠΆΠ½ΠΎΠ³ΠΎ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Ρ–Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽΡŽΡ‚ΡŒΡΡ загальною ΡΠΈΡΡ‚Π΅ΠΌΠΎΡŽ кСрування ΠΏΠΎ засобах ΠΎΠΏΡ‚ΠΎΠ²ΠΎΠ»ΠΎΠΊΠΎΠ½Π½ΠΎΠ³ΠΎ кабСля. ΠžΡΠ½ΠΎΠ²Π½Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Ρ–Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π°: частота 1,3 Π“Π“Ρ†, ΠΏΡ–ΠΊΠΎΠ²Π° ΠΏΠΎΡ‚ΡƒΠΆΠ½Ρ–ΡΡ‚ΡŒ 128 ΠΊΠ’Ρ‚, Π΄ΠΎΠ²ΠΆΠΈΠ½Π° Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΡƒ 1,4 мс, частота повторСння 10 Π“Ρ†, сСрСдня ΠΏΠΎΡ‚ΡƒΠΆΠ½Ρ–ΡΡ‚ΡŒ 1,8 ΠΊΠ’Ρ‚, Π±Π΅Π·ΠΏΠ΅Ρ€Π΅Ρ€Π²Π½Π° ΠΏΠΎΡ‚ΡƒΠΆΠ½Ρ–ΡΡ‚ΡŒ 2,5 ΠΊΠ’Ρ‚. ΠŸΠ΅Ρ€Π΅Π²Π°Π³ΠΈ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Ρ–Π»ΡŒΠ½ΠΎΡ— НВЧ-систСми ТивлСння: прості пСрСмикання Ρ– синхронізація, Ρ€ΠΎΠ·Π΄Ρ–Π»ΡŒΠ½Π΅ ΠΏΡ–Π΄ΡΡ‚Ρ€ΠΎΡŽΠ²Π°Π½Π½Ρ Π²ΠΈΡ…Ρ–Π΄Π½ΠΎΡ— потуТності Ρ– Ρ„Π°Π·ΠΈ для ΠΊΠΎΠΆΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π·ΠΎΠ½Π°Ρ‚ΠΎΡ€Π°, ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ як Π² Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠΌΡƒ, Ρ‚Π°ΠΊ Ρ– Ρƒ Π±Π΅Π·ΠΏΠ΅Ρ€Π΅Ρ€Π²Π½ΠΎΠΌΡƒ Ρ€Π΅ΠΆΠΈΠΌΡ–, Π½Π΅ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½ΠΈΠΉ Ρ‚Π΅Ρ€ΠΌΡ–Π½ слуТби, Π²Ρ–Π΄ΡΡƒΡ‚Π½Ρ–ΡΡ‚ΡŒ високої Π½Π°ΠΏΡ€ΡƒΠ³ΠΈ Ρ– масляного Π±Π°ΠΊΠ°, ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½Ρ–ΡΡ‚ΡŒ

    Thermal fields diagnostic method of changing aircraft aerodynamic state in flight

    Get PDF
    A result of the research was the method of aerodynamic condition of the aircraft on the thermal fields. Based on the mathematical and natural experiments, regularities of formation of temperature gradients in the boundary layer of air that occurs when damage to the contours detected parameters that affect the behavior of the temperature gradient arising from damage, namely the speed and angle of attack of the aircraft, the shape of the profile wings, nature of damage, place of occurrence of damage relative to the outer contours

    Development of a detector based on a CVD-diamond for the use in radiotherapy facilities

    No full text
    High radiation hardness, chemical resistance, high temperature operation capabilities stimulate a growing interest to use diamond materials as detectors of ionizing radiation. Samples of CVD-diamond materials in sizes 4Γ—3 mm and 4Γ—1 mm with thickness from 50 microns up to 500 microns have been grown in INR RAS using a DC glow discharge in a mixture of gases CH4/H2 on molybdenum substrates.Высокая радиационная ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ, ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ ΠΊ химичСским воздСйствиям, тСмпСратурная ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΉ интСрСс ΠΊ использованию Π°Π»ΠΌΠ°Π·Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π² качСствС Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠΉ. ΠžΠ±Ρ€Π°Π·Ρ†Ρ‹ CVD-Π°Π»ΠΌΠ°Π·Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ 4Γ—3 ΠΈ 4Γ—1 ΠΌΠΌ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ ΠΎΡ‚ 50 Π΄ΠΎ 500 ΠΌΠΊΠΌ Π²Ρ‹Ρ€Π°Ρ‰Π΅Π½Ρ‹ Π² ИЯИ РАН ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π³Π°Π·ΠΎΡ„Π°Π·Π½ΠΎΠ³ΠΎ осаТдСния Π² Ρ‚Π»Π΅ΡŽΡ‰Π΅ΠΌ разрядС Π² смСси Π³Π°Π·ΠΎΠ² БН4/Н2 Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ… ΠΈΠ· ΠΌΠΎΠ»ΠΈΠ±Π΄Π΅Π½Π°.Висока Ρ€Π°Π΄Ρ–Π°Ρ†Ρ–ΠΉΠ½Π° ΡΡ‚Ρ–ΠΉΠΊΡ–ΡΡ‚ΡŒ, ΡΡ‚Ρ–ΠΉΠΊΡ–ΡΡ‚ΡŒ Π΄ΠΎ Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΡ… Π²ΠΏΠ»ΠΈΠ²Ρ–Π², Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Π° ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ Π²ΠΈΠΊΠ»ΠΈΠΊΠ°ΡŽΡ‚ΡŒ ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½ΠΈΠΉ інтСрСс Π΄ΠΎ використання Π°Π»ΠΌΠ°Π·Π½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² як Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΈ Ρ–ΠΎΠ½Ρ–Π·ΡƒΡŽΡ‡ΠΈΡ… Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½ΡŒ. Π—Ρ€Π°Π·ΠΊΠΈ CVD-Π°Π»ΠΌΠ°Π·Π½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² Ρ€ΠΎΠ·ΠΌΡ–Ρ€Π°ΠΌΠΈ 4Γ—3 Ρ‚Π° 4Γ—1 ΠΌΠΌ Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½ΠΎΡŽ Π²Ρ–Π΄ 50 Π΄ΠΎ 500 ΠΌΠΊΠΌ Π²ΠΈΡ€ΠΎΡ‰Π΅Π½Ρ– Π² Π†Π―Π† РАН ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π³Π°Π·ΠΎΡ„Π°Π·Π½ΠΎΠ³ΠΎ осадТСння Π² ΠΆΠ΅Π²Ρ€Ρ–ΡŽΡ‡ΠΎΠΌΡƒ розряді Π² ΡΡƒΠΌΡ–ΡˆΡ– Π³Π°Π·Ρ–Π² БН4/Н2 Π½Π° ΠΏΡ–Π΄ΠΊΠ»Π°Π΄ΠΊΠ°Ρ… Π· ΠΌΠΎΠ»Ρ–Π±Π΄Π΅Π½Ρƒ

    Hunting down the X17 boson at the CERN SPS

    Get PDF
    IndexaciΓ³n ScopusRecently, the ATOMKI experiment has reported new evidence for the excess of e+e- events with a mass ∼ 17 MeV in the nuclear transitions of 4He, that they previously observed in measurements with 8Be. These observations could be explained by the existence of a new vector X17 boson. So far, the search for the decay X17 β†’ e+e- with the NA64 experiment at the CERN SPS gave negative results. Here, we present a new technique that could be implemented in NA64 aiming to improve the sensitivity and to cover the remaining X17 parameter space. If a signal-like event is detected, an unambiguous observation is achieved by reconstructing the invariant mass of the X17 decay with the proposed method. To reach this goal an optimization of the X17 production target, as well as an efficient and accurate reconstruction of two close decay tracks, is required. A dedicated analysis of the available experimental data making use of the trackers information is presented. This method provides independent confirmation of the NA64 published results [1], validating the tracking procedure. The detailed Monte Carlo study of the proposed setup and the background estimate show that the goal of the proposed search is feasible. Β© 2020, The Author(s).https://link-springer-com.recursosbiblioteca.unab.cl/article/10.1140%2Fepjc%2Fs10052-020-08725-

    ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ прочностных стСндовых испытаний ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΈ элСмСнтов конструкций Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎ-космичСской Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ

    No full text
    The paper considers the methodological support and evaluation of operation reliability of rocket and space equipment using the inlet lips of ramjet engine (RJE) as an example. The successful solution to these issues is largely defined by the optimal selection of materials - special high-temperature alloys and structural ceramics.The methods for modeling the loading conditions of the inlet lips in a high-temperature gas flow are developed from the approaches that ensure the similarity of the external effect on the structural element and equivalency of damage to the material under the model and full-scale conditions. The process of modeling of equivalent states of the material of extreme thermally-loaded zones (models) is realized in the form of specialized procedures on a gas-dynamic test bench to investigate the performance of materials and structural elements in high-temperature gas flows with variable thermo-dynamic parameters.The approaches are based on the classical theories of similarity and different dimensions, which were changed and adapted to investigate the thermal cyclic strength of materials and damageability of structural elements under loading in high-speed high-temperature gas flows.The developed procedures and experimental facilities allowed one to carry out a set of investigations on the functional characteristics, as well as obtain the system of properties for three materials at extremely high temperatures. It is demonstrated that the realized methods provide the required information for the development of structural elements operating under conditions of aerodynamic heating.The results of bench tests are presented in compliance with the data obtained in the numerical analysis of the implemented conditions of thermal loading on a gas-dynamic test bench, as well as the calculations of thermal and stress states of the inlet lips made of various materials. Based on the data of experimental and analytical generalization of the boundary heat-exchange conditions, the numerical modeling of the dependence of TSSS of the models on the geometric parameters and physical properties of the material is performed under test bench conditions. It is implied that such comparative tests should be performed using the models of similar shape and the same geometric dimensions since their difference affects the stress state of structural elements significantly.На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΊΡ€ΠΎΠΌΠΎΠΊ Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠ·Π°Π±ΠΎΡ€Π½ΠΈΠΊΠΎΠ² прямоточного Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎ-Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ двигатСля (ΠŸΠ’Π Π”) Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ вопросы мСтодологичСского обСспСчСния ΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ эксплуатационной надСТности ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ Ρ€Π°ΠΊΠ΅Ρ‚Π½ΠΎ-космичСской Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ. УспСшноС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ этой ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ опрСдСляСтся ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π²Ρ‹Π±ΠΎΡ€ΠΎΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… классов – ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΆΠ°Ρ€ΠΎΠΏΡ€ΠΎΡ‡Π½Ρ‹Ρ… сплавов ΠΈ конструкционной ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ модСлирования условий нагруТСния ΠΊΡ€ΠΎΠΌΠΎΠΊ Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠ·Π°Π±ΠΎΡ€Π½ΠΈΠΊΠΎΠ² Π² высокотСмпСратурном Π³Π°Π·ΠΎΠ²ΠΎΠΌ ΠΏΠΎΡ‚ΠΎΠΊΠ΅ с использованиСм ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ², ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ внСшнСго воздСйствия Π½Π° конструкционный элСмСнт ΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ процСссов поврСТдСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π² ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π½Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… условиях. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ эквивалСнтных состояний ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΡΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½ΠΎ Ρ‚Π΅Ρ€ΠΌΠΎΠ½Π°Π³Ρ€ΡƒΠΆΠ΅Π½Π½Ρ‹Ρ… Π·ΠΎΠ½ ΠΌΠ°ΠΊΠ΅Ρ‚ΠΎΠ² Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΎ Π² Π²ΠΈΠ΄Π΅ спСциализированных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ с использованиСм возмоТностСй комплСкса газодинамичСских стСндов для исслСдования работоспособности ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ элСмСнтов конструкций Π² высокотСмпСратурных Π³Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠ°Ρ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… тСрмодинамичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ².Π€ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π±Π°Π·ΠΎΠΉ этих ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΡΠ²Π»ΡΡŽΡ‚ΡΡ классичСскиС Ρ‚Π΅ΠΎΡ€ΠΈΠΈ подобия ΠΈ размСрностСй, основныС полоТСния ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… трансформированы ΠΈ Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊ Π·Π°Π΄Π°Ρ‡Π°ΠΌ исслСдования тСрмоцикличСской прочности ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ поврСТдаСмости элСмСнтов конструкций ΠΏΡ€ΠΈ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ Π² высокоскоростных высокотСмпСратурных Π³Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠ°Ρ….Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ срСдства ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ провСсти Ρ†ΠΈΠΊΠ» исслСдований Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… характСристик, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ комплСкса свойств Ρ‚Ρ€Π΅Ρ… Π²ΠΈΠ΄ΠΎΠ² ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΏΡ€ΠΈ ΡΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½ΠΎ высоких Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ…, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… эксплуатационным. Показано, Ρ‡Ρ‚ΠΎ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ для ΠΎΡ‚Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ создания элСмСнтов конструкций, Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΡ… Π² условиях аэродинамичСского Π½Π°Π³Ρ€Π΅Π²Π°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ стСндовых испытаний ΠΌΠ°ΠΊΠ΅Ρ‚ΠΎΠ² прСдставлСны Π² связи с ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Π² процСссС числСнного Π°Π½Π°Π»ΠΈΠ·Π° Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… условий тСрмичСского нагруТСния Π½Π° газодинамичСском стСндС ΠΈ расчСтов Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ напряТСнного состояния ΠΊΡ€ΠΎΠΌΠΎΠΊ ΠΌΠ°ΠΊΠ΅Ρ‚ΠΎΠ² ΠΈΠ· Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². По Π΄Π°Π½Π½Ρ‹ΠΌ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ аналитичСского обобщСния Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… условий Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π° Π² стСндовых условиях ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ числСнноС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ зависимости ВНДБ ΠΌΠ°ΠΊΠ΅Ρ‚ΠΎΠ² ΠΎΡ‚ гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈ физичСских свойств исслСдованных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². Показано, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ испытания Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π½Π° модСлях ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΈ ΠΎΠ΄Π½ΠΈΡ… гСомСтричСских Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ², Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΈΡ… ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ сущСствСнно влияСт Π½Π° напряТСнноС состояниС конструкционных элСмСнто

    Thermal fields diagnostic method of changing aircraft aerodynamic state in flight

    No full text
    A result of the research was the method of aerodynamic condition of the aircraft on the thermal fields. Based on the mathematical and natural experiments, regularities of formation of temperature gradients in the boundary layer of air that occurs when damage to the contours detected parameters that affect the behavior of the temperature gradient arising from damage, namely the speed and angle of attack of the aircraft, the shape of the profile wings, nature of damage, place of occurrence of damage relative to the outer contours

    Pathophysiological and Methodological Aspects of Determining Renal Functional Reserve in Clinical Nephrology

    No full text
    The article pathogenetically substantiates the feasibility of using methods for determining functional renal reserve through salt and water loading of 0.5% sodium chloride in an amount of 0.5 % of the body weight in patients suffering from chronic kidney disease. The informative value of determining the functional renal reserve in clinical nephrology on the example of patients with essential hypertension, diabetes mellitus, and AIDS is shown when assessing the nature and extent of nephron damage
    corecore