8,005 research outputs found

    The 13^{13}Carbon footprint of B[e] supergiants

    Full text link
    We report on the first detection of 13^{13}C enhancement in two B[e] supergiants in the Large Magellanic Cloud. Stellar evolution models predict the surface abundance in 13^{13}C to strongly increase during main-sequence and post-main sequence evolution of massive stars. However, direct identification of chemically processed material on the surface of B[e] supergiants is hampered by their dense, disk-forming winds, hiding the stars. Recent theoretical computations predict the detectability of enhanced 13^{13}C via the molecular emission in 13^{13}CO arising in the circumstellar disks of B[e] supergiants. To test this potential method and to unambiguously identify a post-main sequence B[e]SG by its 13^{13}CO emission, we have obtained high-quality KK-band spectra of two known B[e] supergiants in the Large Magellanic Cloud, using the Very Large Telescope's Spectrograph for INtegral Field Observation in the Near-Infrared (VLT/SINFONI). Both stars clearly show the 13^{13}CO band emission, whose strength implies a strong enhancement of 13^{13}C, in agreement with theoretical predictions. This first ever direct confirmation of the evolved nature of B[e] supergiants thus paves the way to the first identification of a Galactic B[e] supergiant.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter

    Relaxation to magnetohydrodynamics equilibria via collision brackets

    Full text link
    Metriplectic dynamics is applied to compute equilibria of fluid dynamical systems. The result is a relaxation method in which Hamiltonian dynamics (symplectic structure) is combined with dissipative mechanisms (metric structure) that relaxes the system to the desired equilibrium point. The specific metric operator, which is considered in this work, is formally analogous to the Landau collision operator. These ideas are illustrated by means of case studies. The considered physical models are the Euler equations in vorticity form, the Grad-Shafranov equation, and force-free MHD equilibria.Comment: Conference Proceeding (Theory of Fusions Plasmas, 2018), 9 pages, 8 figure

    Quantum adaptation of noisy channels

    Full text link
    Probabilistic quantum filtering is proposed to properly adapt sequential independent quantum channels in order to stop sudden death of entanglement. In the adaptation, the quantum filtering does not distill or purify more entanglement, it rather properly prepares entangled state to the subsequent quantum channel. For example, the quantum adaptation probabilistically eliminates the sudden death of entanglement of two-qubit entangled state with isotropic noise injected into separate amplitude damping channels. The result has a direct application in quantum key distribution through noisy channels.Comment: 6 pages, 4 figure

    The Path Integral for 1+1-dimensional QCD

    Get PDF
    We derive a path integral expression for the transition amplitude in 1+1-dimensional QCD starting from canonically quantized QCD. Gauge fixing after quantization leads to a formulation in terms of gauge invariant but curvilinear variables. Remainders of the curved space are Jacobians, an effective potential, and sign factors just as for the problem of a particle in a box. Based on this result we derive a Faddeev-Popov like expression for the transition amplitude avoiding standard infinities that are caused by integrations over gauge equivalent configurations.Comment: 16 pages, LaTeX, 3 PostScript figures, uses epsf.st

    Photon position measure

    Full text link
    The positive operator valued measure (POVM) for a photon counting array detector is derived and found to equal photon flux density integrated over pixel area and measurement time. Since photon flux density equals number density multiplied by the speed of light, this justifies theoretically the observation that a photon counting array provides a coarse grained measurement of photon position. The POVM obtained here can be written as a set of projectors onto a basis of localized states, consistent with the description of photon position in a recent quantum imaging proposal [M. Tsang, Phys. Rev. Lett. \textbf{102}, 253601 (2009)]. The wave function that describes a photon counting experiment is the projection of the photon state vector onto this localized basis. Collapse is to the electromagnetic vacuum and not to a localized state, thus violating the text book rules of quantum mechanics but compatible with the theory of generalized observables and the nonlocalizability of an incoming photon

    A K-band spectral mini-survey of Galactic B[e] stars

    Get PDF
    We present a mini-survey of Galactic B[e] stars mainly undertaken with the Large Binocular Telescope (LBT). B[e] stars show morphological features with hydrogen emission lines and an infrared excess, attributed to warm circumstellar dust. In general, these features are assumed to arise from dense, non-spherical, disk-forming circumstellar material in which molecules and dust can condensate. Due to the lack of reliable luminosities, the class of Galactic B[e] stars contains stars at very different stellar evolutionary phases like Herbig AeBe, supergiants or planetary nebulae. We took near-infrared long-slit K-band spectra for a sample of Galactic B[e] stars with the LBT-Luci I. Prominent spectral features, such as the Brackett gamma line and CO band heads are identified in the spectra. The analysis shows that the stars can be characterized as evolved objects. Among others we find one LBV candidate (MWC314), one supergiant B[e] candidate with 13CO (MWC137) and in two cases (MWC623 and AS 381) indications for the existence of a late-type binary companion, complementary to previous studies. For MWC84, IR spectra were taken at different epochs with LBT-Luci I and the GNIRS spectrograph at the Gemini North telescope. The new data show the disappearance of the circumstellar CO emission around this star, previously detectable over decades. Also no signs of a recent prominent eruption leading to the formation of new CO disk emission are found during 2010 and 2013.Comment: 10 pages, 7 figures, 4 tables, accepted for publication in MNRAS (in press

    Application of advanced technologies to small, short-haul transport aircraft (STAT)

    Get PDF
    The benefits of selected advanced technologies for 19 and 30 passenger, short-haul aircraft were identified. Advanced technologies were investigated in four areas: aerodynamics, propulsion, structures, and ride quality. Configuration sensitivity studies were conducted to show design tradeoffs associated with passenger capacity, cabin comfort level, and design field length

    Conserved current for the Cotton tensor, black hole entropy and equivariant Pontryagin forms

    Full text link
    The Chern-Simons lagrangian density in the space of metrics of a 3-dimensional manifold M is not invariant under the action of diffeomorphisms on M. However, its Euler-Lagrange operator can be identified with the Cotton tensor, which is invariant under diffeomorphims. As the lagrangian is not invariant, Noether Theorem cannot be applied to obtain conserved currents. We show that it is possible to obtain an equivariant conserved current for the Cotton tensor by using the first equivariant Pontryagin form on the bundle of metrics. Finally we define a hamiltonian current which gives the contribution of the Chern-Simons term to the black hole entropy, energy and angular momentum.Comment: 13 page

    Entanglement and nonclassical properties of hypergraph states

    Full text link
    Hypergraph states are multi-qubit states that form a subset of the locally maximally entangleable states and a generalization of the well--established notion of graph states. Mathematically, they can conveniently be described by a hypergraph that indicates a possible generation procedure of these states; alternatively, they can also be phrased in terms of a non-local stabilizer formalism. In this paper, we explore the entanglement properties and nonclassical features of hypergraph states. First, we identify the equivalence classes under local unitary transformations for up to four qubits, as well as important classes of five- and six-qubit states, and determine various entanglement properties of these classes. Second, we present general conditions under which the local unitary equivalence of hypergraph states can simply be decided by considering a finite set of transformations with a clear graph-theoretical interpretation. Finally, we consider the question whether hypergraph states and their correlations can be used to reveal contradictions with classical hidden variable theories. We demonstrate that various noncontextuality inequalities and Bell inequalities can be derived for hypergraph states.Comment: 29 pages, 5 figures, final versio
    • …
    corecore