8,005 research outputs found
The Carbon footprint of B[e] supergiants
We report on the first detection of C enhancement in two B[e]
supergiants in the Large Magellanic Cloud. Stellar evolution models predict the
surface abundance in C to strongly increase during main-sequence and
post-main sequence evolution of massive stars. However, direct identification
of chemically processed material on the surface of B[e] supergiants is hampered
by their dense, disk-forming winds, hiding the stars. Recent theoretical
computations predict the detectability of enhanced C via the molecular
emission in CO arising in the circumstellar disks of B[e] supergiants.
To test this potential method and to unambiguously identify a post-main
sequence B[e]SG by its CO emission, we have obtained high-quality
-band spectra of two known B[e] supergiants in the Large Magellanic Cloud,
using the Very Large Telescope's Spectrograph for INtegral Field Observation in
the Near-Infrared (VLT/SINFONI). Both stars clearly show the CO band
emission, whose strength implies a strong enhancement of C, in agreement
with theoretical predictions. This first ever direct confirmation of the
evolved nature of B[e] supergiants thus paves the way to the first
identification of a Galactic B[e] supergiant.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter
Relaxation to magnetohydrodynamics equilibria via collision brackets
Metriplectic dynamics is applied to compute equilibria of fluid dynamical
systems. The result is a relaxation method in which Hamiltonian dynamics
(symplectic structure) is combined with dissipative mechanisms (metric
structure) that relaxes the system to the desired equilibrium point. The
specific metric operator, which is considered in this work, is formally
analogous to the Landau collision operator. These ideas are illustrated by
means of case studies. The considered physical models are the Euler equations
in vorticity form, the Grad-Shafranov equation, and force-free MHD equilibria.Comment: Conference Proceeding (Theory of Fusions Plasmas, 2018), 9 pages, 8
figure
Quantum adaptation of noisy channels
Probabilistic quantum filtering is proposed to properly adapt sequential
independent quantum channels in order to stop sudden death of entanglement. In
the adaptation, the quantum filtering does not distill or purify more
entanglement, it rather properly prepares entangled state to the subsequent
quantum channel. For example, the quantum adaptation probabilistically
eliminates the sudden death of entanglement of two-qubit entangled state with
isotropic noise injected into separate amplitude damping channels. The result
has a direct application in quantum key distribution through noisy channels.Comment: 6 pages, 4 figure
The Path Integral for 1+1-dimensional QCD
We derive a path integral expression for the transition amplitude in
1+1-dimensional QCD starting from canonically quantized QCD. Gauge fixing after
quantization leads to a formulation in terms of gauge invariant but curvilinear
variables. Remainders of the curved space are Jacobians, an effective
potential, and sign factors just as for the problem of a particle in a box.
Based on this result we derive a Faddeev-Popov like expression for the
transition amplitude avoiding standard infinities that are caused by
integrations over gauge equivalent configurations.Comment: 16 pages, LaTeX, 3 PostScript figures, uses epsf.st
Photon position measure
The positive operator valued measure (POVM) for a photon counting array
detector is derived and found to equal photon flux density integrated over
pixel area and measurement time. Since photon flux density equals number
density multiplied by the speed of light, this justifies theoretically the
observation that a photon counting array provides a coarse grained measurement
of photon position. The POVM obtained here can be written as a set of
projectors onto a basis of localized states, consistent with the description of
photon position in a recent quantum imaging proposal [M. Tsang, Phys. Rev.
Lett. \textbf{102}, 253601 (2009)]. The wave function that describes a photon
counting experiment is the projection of the photon state vector onto this
localized basis. Collapse is to the electromagnetic vacuum and not to a
localized state, thus violating the text book rules of quantum mechanics but
compatible with the theory of generalized observables and the nonlocalizability
of an incoming photon
A K-band spectral mini-survey of Galactic B[e] stars
We present a mini-survey of Galactic B[e] stars mainly undertaken with the
Large Binocular Telescope (LBT). B[e] stars show morphological features with
hydrogen emission lines and an infrared excess, attributed to warm
circumstellar dust. In general, these features are assumed to arise from dense,
non-spherical, disk-forming circumstellar material in which molecules and dust
can condensate. Due to the lack of reliable luminosities, the class of Galactic
B[e] stars contains stars at very different stellar evolutionary phases like
Herbig AeBe, supergiants or planetary nebulae. We took near-infrared long-slit
K-band spectra for a sample of Galactic B[e] stars with the LBT-Luci I.
Prominent spectral features, such as the Brackett gamma line and CO band heads
are identified in the spectra. The analysis shows that the stars can be
characterized as evolved objects. Among others we find one LBV candidate
(MWC314), one supergiant B[e] candidate with 13CO (MWC137) and in two cases
(MWC623 and AS 381) indications for the existence of a late-type binary
companion, complementary to previous studies. For MWC84, IR spectra were taken
at different epochs with LBT-Luci I and the GNIRS spectrograph at the Gemini
North telescope. The new data show the disappearance of the circumstellar CO
emission around this star, previously detectable over decades. Also no signs of
a recent prominent eruption leading to the formation of new CO disk emission
are found during 2010 and 2013.Comment: 10 pages, 7 figures, 4 tables, accepted for publication in MNRAS (in
press
Application of advanced technologies to small, short-haul transport aircraft (STAT)
The benefits of selected advanced technologies for 19 and 30 passenger, short-haul aircraft were identified. Advanced technologies were investigated in four areas: aerodynamics, propulsion, structures, and ride quality. Configuration sensitivity studies were conducted to show design tradeoffs associated with passenger capacity, cabin comfort level, and design field length
Conserved current for the Cotton tensor, black hole entropy and equivariant Pontryagin forms
The Chern-Simons lagrangian density in the space of metrics of a
3-dimensional manifold M is not invariant under the action of diffeomorphisms
on M. However, its Euler-Lagrange operator can be identified with the Cotton
tensor, which is invariant under diffeomorphims. As the lagrangian is not
invariant, Noether Theorem cannot be applied to obtain conserved currents. We
show that it is possible to obtain an equivariant conserved current for the
Cotton tensor by using the first equivariant Pontryagin form on the bundle of
metrics. Finally we define a hamiltonian current which gives the contribution
of the Chern-Simons term to the black hole entropy, energy and angular
momentum.Comment: 13 page
Entanglement and nonclassical properties of hypergraph states
Hypergraph states are multi-qubit states that form a subset of the locally
maximally entangleable states and a generalization of the well--established
notion of graph states. Mathematically, they can conveniently be described by a
hypergraph that indicates a possible generation procedure of these states;
alternatively, they can also be phrased in terms of a non-local stabilizer
formalism. In this paper, we explore the entanglement properties and
nonclassical features of hypergraph states. First, we identify the equivalence
classes under local unitary transformations for up to four qubits, as well as
important classes of five- and six-qubit states, and determine various
entanglement properties of these classes. Second, we present general conditions
under which the local unitary equivalence of hypergraph states can simply be
decided by considering a finite set of transformations with a clear
graph-theoretical interpretation. Finally, we consider the question whether
hypergraph states and their correlations can be used to reveal contradictions
with classical hidden variable theories. We demonstrate that various
noncontextuality inequalities and Bell inequalities can be derived for
hypergraph states.Comment: 29 pages, 5 figures, final versio
- …