53 research outputs found
How to assess the impact of an electronic document? And what does impact mean anyway? : reliable usage statistics in heterogeneous repository communities
<b>Purpose</b>
Usually impact of research and researchers is tried to be quantified by using citation data: Either by journal-centered citation data as in the case of the journal impact factor JIF or by author-centered citation data as in the case of the Hirsch- or h-index. The paper discusses a range of impact measures, especially usage based metrics. Furthermore the authors report the results of two surveys. The surveys focused on innovative features for open access repositories â with an emphasis on functionalities based on usage information.
<b>Design/methodology/approach</b>
The first part of the article analyzes both citation-based and usage-based metrics. The second part is based on the findings of the surveys: One in form of a brainstorming session with information professionals and scientists at the OAI6 conference in Geneva, the second in form of expert interviews mainly with scientists.
<b>Findings</b>
The results of the surveys indicate an interest in the social aspects of science like visualizations of social graphs both for persons and their publications. Furthermore usage data is considered an appropriate measure to describe quality and coverage of scientific documents, admittedly the consistence of usage information among repository has to be kept in mind. The scientist that took part in the survey also asked for community services, assuming these might help to identify relevant scientific information more easily. Some of the other topics of interest were personalization or easy submission procedures.
<b>Originality/value</b>
This paper delineates current discussions about citation-based and usage-based metrics. Based on the results of the surveys it depicts which functionalities could enhance repositories, what features are required by scientists and information professionals and whether usage-based services are considered valuable. These results also outline some elements of future repository research
Systematic review and meta-analysis provide no guidance on management of asymptomatic bacteriuria within the first year after kidney transplantation
ProducciĂłn CientĂfica(1) Background: Urinary tract infections (UTIs) are among the most frequent complications in kidney transplant (KT) recipients. Asymptomatic bacteriuria (ASB) may be a risk factor for UTIs and graft rejection. We aimed to evaluate available evidence regarding the benefit of screening and treatment of ASB within the first year after KT. (2) Evidence acquisition: A systematic literature search was conducted in MEDLINE, the Cochrane Library CENTRAL and Embase. Inclusion criteria were manuscripts in English addressing the management of ASB after KT. The PICO questions concerned Patients (adults receiving a KT), Intervention (screening, diagnosis and treatment of ASB), Control (screening and no antibiotic treatment) and Outcome (UTIs, sepsis, kidney failure and death). (3) Evidence synthesis: The systematic review identified 151 studies, and 16 full-text articles were evaluated. Seven were excluded because they did not evaluate the effect of treatment of ASB. There was no evidence for a higher incidence of lower UTIs, acute pyelonephritis, graft loss, or mortality in patients not treated with antibiotics for ASB. Analysis of comparative non-randomized and observational studies did not provide supplementary evidence to guide clinical recommendations. We believe this lack of evidence is due to confounding risk factors that are not being considered in the stratification of study patients
KMT2A and KMT2B Mediate Memory Function by Affecting Distinct Genomic Regions
Kmt2a and Kmt2b are H3K4 methyltransferases of the Set1/Trithorax class. We have recently shown the importance of Kmt2b for learning and memory. Here, we report that Kmt2a is also important in memory formation. We compare the decrease in H3K4 methylation and de-regulation of gene expression in hippocampal neurons of mice with knockdown of either Kmt2a or Kmt2b. Kmt2a and Kmt2b control largely distinct genomic regions and different molecular pathways linked to neuronal plasticity. Finally, we show that the decrease in H3K4 methylation resulting from Kmt2a knockdown partially recapitulates the pattern previously reported in CK-p25 mice, a model for neurodegeneration and memory impairment. Our findings point to the distinct functions of even closely related histone-modifying enzymes and provide essential insight for the development of more efficient and specific epigenetic therapies against brain diseases.Beca RamĂłn y CajalGAIN- Agencia Gallega de InnovaciĂł
KMT2A and KMT2B Mediate Memory Function by Affecting Distinct Genomic Regions
Kmt2a and Kmt2b are H3K4 methyltransferases of the Set1/Trithorax class. We have recently shown the importance of Kmt2b for learning and memory. Here, we report that Kmt2a is also important in memory formation. We compare the decrease in H3K4 methylation and de-regulation of gene expression in hippocampal neurons of mice with knockdown of either Kmt2a or Kmt2b. Kmt2a and Kmt2b control largely distinct genomic regions and different molecular pathways linked to neuronal plasticity. Finally, we show that the decrease in H3K4 methylation resulting from Kmt2a knockdown partially recapitulates the pattern previously reported in CK-p25 mice, a model for neurodegeneration and memory impairment. Our findings point to the distinct functions of even closely related histone-modifying enzymes and provide essential insight for the development of more efficient and specific epigenetic therapies against brain diseases
Cobaloxime complex salts : synthesis, patterning on carbon nanomembranes and heterogeneous hydrogen evolution studies
Cobaloximes are promising, earth-abundant catalysts for the light-driven hydrogen evolution reaction. Typically, these cobalt(III) complexes are prepared in situ or employed in their neutral form, e.g. [Co(dmgH 2 )(py)Cl], even though related complex salts have been reported previously and could in principle offer improved catalytic activity as well as more efficient immobilization on solid support. Here we report an interdisciplinary investigation into complex salts [Co(dmgH) 2 (py) 2 ] + [Co(dmgBPh 2 ) 2 Cl 2 ] - , TBA + [Co(dmgBPh 2 ) 2 Cl 2 ] - and [Co(dmgH) 2 (py) 2 ] + BArF - . We describe their strategic syntheses from commercially available complex [Co(dmgH) 2 (py)Cl] and demonstrate that these double and single complex salts are potent catalysts for the light-driven hydrogen evolution reaction. We also show that scanning electrochemical cell microscopy can be used to deposit arrays of catalysts [Co(dmgH) 2 (py) 2 ] + [Co(dmgBPh 2 ) 2 Cl 2 ] - and [Co(dmgH) 2 (py)Cl] on supported and free-standing amino-terminated ~ 1 nm thick carbon nanomembranes (CNMs). Photocatalytic H 2 evolution at such arrays was quantified with Pd microsensors using scanning electrochemical microscopy, thus providing a new approach for catalytic evaluation and opening up novel routes for the creation and analysis of âdesigner catalyst arraysâ, nano-printed in a desired pattern on a solid support
The effect of sodium thiosulfate on immune cell metabolism during porcine hemorrhage and resuscitation
Introduction
Sodium thiosulfate (Na2S2O3), an H2S releasing agent, was shown to be organ-protective in experimental hemorrhage. Systemic inflammation activates immune cells, which in turn show cell type-specific metabolic plasticity with modifications of mitochondrial respiratory activity. Since H2S can dose-dependently stimulate or inhibit mitochondrial respiration, we investigated the effect of Na2S2O3 on immune cell metabolism in a blinded, randomized, controlled, long-term, porcine model of hemorrhage and resuscitation. For this purpose, we developed a Bayesian sampling-based model for 13C isotope metabolic flux analysis (MFA) utilizing 1,2-13C2-labeled glucose, 13C6-labeled glucose, and 13C5-labeled glutamine tracers.
Methods
After 3 h of hemorrhage, anesthetized and surgically instrumented swine underwent resuscitation up to a maximum of 68 h. At 2 h of shock, animals randomly received vehicle or Na2S2O3 (25 mg/kg/h for 2 h, thereafter 100 mg/kg/h until 24 h after shock). At three time points (prior to shock, 24 h post shock and 64 h post shock) peripheral blood mononuclear cells (PBMCs) and granulocytes were isolated from whole blood, and cells were investigated regarding mitochondrial oxygen consumption (high resolution respirometry), reactive oxygen species production (electron spin resonance) and fluxes within the metabolic network (stable isotope-based MFA).
Results
PBMCs showed significantly higher mitochondrial O2 uptake and lower
O
2
âą
â
production in comparison to granulocytes. We found that in response to Na2S2O3 administration, PBMCs but not granulocytes had an increased mitochondrial oxygen consumption combined with a transient reduction of the citrate synthase flux and an increase of acetyl-CoA channeled into other compartments, e.g., for lipid biogenesis.
Conclusion
In a porcine model of hemorrhage and resuscitation, Na2S2O3 administration led to increased mitochondrial oxygen consumption combined with stimulation of lipid biogenesis in PBMCs. In contrast, granulocytes remained unaffected. Granulocytes, on the other hand, remained unaffected.
O
2
âą
â
concentration in whole blood remained constant during shock and resuscitation, indicating a sufficient anti-oxidative capacity. Overall, our MFA model seems to be is a promising approach for investigating immunometabolism; especially when combined with complementary methods
- âŠ