113 research outputs found

    On incorporating uncertainty analysis in abstract building performance simulation tools

    Get PDF
    Building Performance Simulation (BPS) is a powerful measure to educate the building design process. However, its use in practice is too large extends limited to the detailed design stage dedicated to the code compliance analysis of worked out design proposals. BPS is not much used to support the conceptual design stage (CDS). To date BPS – tools are regarded as pure analysis tools, which do not provide design information. It is hypothesized that, when integrating uncertainty analysis techniques to existing BPS – tools (incremental research approach) valuable design information can be provided. The paper gives an update on the process to integrate an uncertainty assessment capability to a tool specifically developed to support the conceptual design stage. The resulting prototype should be capable of providing information about the deviation of specific design parameters (simulation output) based on the uncertainties of the building concept specification (simulation input). In addition to the total uncertainties, the results also indicate sensitivities of the design parameters as a result of the concept specification variation. This paper describes an approach to add extra-capabilities to legacy simulation tools and presents a comparison of uncertainties and total sensitivities calculated with one detailed design analysis (DDA) tool, IES, and one conceptual design analysis (CDA) tool , LEA. The main focus was herby the representation of material properties and its impact on the model uncertainty

    On incorporating uncertainty analysis in abstract building performance simulation tools

    Get PDF
    Building Performance Simulation (BPS) is a powerful measure to educate the building design process. However, its use in practice is too large extends limited to the detailed design stage dedicated to the code compliance analysis of worked out design proposals. BPS is not much used to support the conceptual design stage (CDS). To date BPS – tools are regarded as pure analysis tools, which do not provide design information. It is hypothesized that, when integrating uncertainty analysis techniques to existing BPS – tools (incremental research approach) valuable design information can be provided. The paper gives an update on the process to integrate an uncertainty assessment capability to a tool specifically developed to support the conceptual design stage. The resulting prototype should be capable of providing information about the deviation of specific design parameters (simulation output) based on the uncertainties of the building concept specification (simulation input). In addition to the total uncertainties, the results also indicate sensitivities of the design parameters as a result of the concept specification variation. This paper describes an approach to add extra-capabilities to legacy simulation tools and presents a comparison of uncertainties and total sensitivities calculated with one detailed design analysis (DDA) tool, IES, and one conceptual design analysis (CDA) tool , LEA. The main focus was herby the representation of material properties and its impact on the model uncertainty

    Technique of uncertainty and sensitivity analysis for sustainable building energy systems performance calculations

    Get PDF
    Sustainable buildings design process is typical for modeling and simulation usage. The main reason is because there is generally no experience with such buildings and there is lot of new approaches and technical solutions to be used. Computer simulation could be supporting tool in engineering design process and can bring the good way for reducing energy consumption together with optimalization algorithm. For the optimization process we have to know which most sensitive input parametr from many of them has to be investigate. Therefore at first is necessary to perform the sensitivity analysis and find out the "strongest" input parametrs which most affecting the results under observation. Also still the simulation tools are mainly using to predict energy consumption, boiler and chiller loads, indoor air quality, etc. before the building is build. The information about the building envelope, schedule and HVAC components are unclear and can bring large uncertainty in results by setting this inputs to the simulation tools. Paper presents preview of uncertainty and sensitivity analysis. This techniques are shown on case study concretely BESTEST case600 with DRYCOLD climate conditions. Also systems VAV (variable volume of air) and water fancoil system are compared. For this prototype the simulation tool IES was chosen

    The interaction between fluid flow and ultra-hydrophobic surface in mini channel

    Full text link
    Interaction of liquid with ultra-hydrophobic surface is accompanied by creation of layer of air. The effect of the air film has a potential of use in industry in many applications. The quality of the surface is influenced by matrix roughness, the character of physical or chemical cover. There was developed a method for analysis of the liquid flow and the air film using the lighting in volume, visualization with CCD camera and long distance microscope, and optical filters. There were prepared four stainless steel samples of inner channel of dimensions (80 Ă— 8 Ă— 8) mm and initial surface roughness Ra 0.33, Ra 1.0, Ra 2.0, and Ra 2.2. The inner channel was treated with plasma and commercial hydrophobic coating Greblon (WEILBURGER Coatings GmbH). There was realized study focused on the liquid flow velocity profile close to the air film. There are present results for laminar, transient and turbulent flows. The study also estimated the air film thickness depending on the Re number. The knowledge of the air film behaviour helps applied suitable degree of processing and cover for the target application

    Effect of the molecular structure of the polymer and nucleation on the optical properties of polypropylene homo- and copolymers.

    Get PDF
    Two soluble nucleating agents were used to modify the optical properties of nine PP homo- and random copolymers. The ethylene content of the polymers changed between 0 and 5.3 wt%. Chain regularity was characterized by the stepwise isothermal segregation technique (SIST), while optical properties by the measurement of the haze of injection molded samples. Crystallization and melting characteristics were determined by differential scanning calorimetry (DSC). The analysis of the results proved that lamella thickness and change in crystallinity influence haze only slightly. A model was introduced which describes quantitatively the dependence of nucleation efficiency and haze on the concentration of the nucleating agent. The model assumes that the same factors influence the peak temperature of crystallization and optical properties. The analysis of the results proved that the assumption is valid under the same crystallization conditions. The parameters of the model depend on the molecular architecture of the polymer. Chain regularity determines supermolecular structure and thus the dependence of optical properties on nucleation

    Clinically Translatable Cell Tracking and Quantification by MRI in Cartilage Repair Using Superparamagnetic Iron Oxides

    Get PDF
    Background: Articular cartilage has very limited intrinsic regenerative capacity, making cell-based therapy a tempting approach for cartilage repair. Cell tracking can be a major step towards unraveling and improving the repair process of these therapies. We studied superparamagnetic iron oxides (SPIO) for labeling human bone marrow-derived mesenchymal stem cells (hBMSCs) regarding effectivity, cell viability, long term metabolic cell activity, chondrogenic differentiation and hBMSC secretion profile. We additionally examined the capacity of synovial cells to endocytose SPIO from dead, labeled cells, together with the use of magnetic resonance imaging (MRI) for intra-articular visualization and quantification of SPIO labeled cells. Methodology/Prinicipal Findings: Efficacy and various safety aspects of SPIO cell labeling were determined using appropriate assays. Synovial SPIO re-uptake was investigated in vitro by co-labeling cells with SPIO and green fluorescent protein (GFP). MRI experiments were performed on a clinical 3.0T MRI scanner. Two cell-based cartilage repair techniques were mimicked for evaluating MRI traceability of labeled cells: intra-articular cell injection and cell implantation in cartilage defects. Cells were applied ex vivo or in vitro in an intra-articular environment and immediately scanned. SPIO labeling was effective and did not impair any of the studied safety aspects, including hBMSC secretion profile. SPIO from dead, labeled cells could be taken up by synovial cells. Both injected and implanted SPIO-labeled cells could accurately be visualized by MRI in a clinically relevant sized joint model using clinically applied cell doses. Finally, we quantified the amount of labeled cells seeded in cartilage defects using MR-based relaxometry. Conclusions: SPIO labeling appears to be safe without influencing cell behavior. SPIO labeled cells can be visualized in an intra-articular environment and quantified when seeded in cartilage defects.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Technique of uncertainty and sensitivity analysis for sustainable building energy systems performance calculations

    No full text
    Sustainable buildings design process is typical for modeling and simulation usage. The main reason is because there is generally no experience with such buildings and there is lot of new approaches and technical solutions to be used. Computer simulation could be supporting tool in engineering design process and can bring the good way for reducing energy consumption together with optimalization algorithm. For the optimization process we have to know which most sensitive input parametr from many of them has to be investigate. Therefore at first is necessary to perform the sensitivity analysis and find out the "strongest" input parametrs which most affecting the results under observation. Also still the simulation tools are mainly using to predict energy consumption, boiler and chiller loads, indoor air quality, etc. before the building is build. The information about the building envelope, schedule and HVAC components are unclear and can bring large uncertainty in results by setting this inputs to the simulation tools. Paper presents preview of uncertainty and sensitivity analysis. This techniques are shown on case study concretely BESTEST case600 with DRYCOLD climate conditions. Also systems VAV (variable volume of air) and water fancoil system are compared. For this prototype the simulation tool IES was chosen

    The influence of the wall temperature on the flow from the floor convector (experimental results)

    No full text
    This article describes the measurement of the influnce of the wall temperature on flow from the floor convector. The measurement is realized in an open space laboratory inlet and outlet is visulized using PIV technique. Two temperatures 19.8 °C and 12.5 °C are set at the wall to evaluate the influnce of the wall cooling
    • …
    corecore