496 research outputs found
Slice Stretching Effects for Maximal Slicing of a Schwarzschild Black Hole
Slice stretching effects such as slice sucking and slice wrapping arise when
foliating the extended Schwarzschild spacetime with maximal slices. For
arbitrary spatial coordinates these effects can be quantified in the context of
boundary conditions where the lapse arises as a linear combination of odd and
even lapse. Favorable boundary conditions are then derived which make the
overall slice stretching occur late in numerical simulations. Allowing the
lapse to become negative, this requirement leads to lapse functions which
approach at late times the odd lapse corresponding to the static Schwarzschild
metric. Demanding in addition that a numerically favorable lapse remains
non-negative, as result the average of odd and even lapse is obtained. At late
times the lapse with zero gradient at the puncture arising for the puncture
evolution is precisely of this form. Finally, analytic arguments are given on
how slice stretching effects can be avoided. Here the excision technique and
the working mechanism of the shift function are studied in detail.Comment: 16 pages, 4 figures, revised version including a study on how slice
stretching can be avoided by using excision and/or shift
Phenomenological template family for black-hole coalescence waveforms
Recent progress in numerical relativity has enabled us to model the
non-perturbative merger phase of the binary black-hole coalescence problem.
Based on these results, we propose a phenomenological family of waveforms which
can model the inspiral, merger, and ring-down stages of black hole coalescence.
We also construct a template bank using this family of waveforms and discuss
its implementation in the search for signatures of gravitational waves produced
by black-hole coalescences in the data of ground-based interferometers. This
template bank might enable us to extend the present inspiral searches to
higher-mass binary black-hole systems, i.e., systems with total mass greater
than about 80 solar masses, thereby increasing the reach of the current
generation of ground-based detectors.Comment: Minor changes, Submitted to Class. Quantum Grav. (Proc. GWDAW11
Recoil velocities from equal-mass binary black-hole mergers: a systematic investigation of spin-orbit aligned configurations
Binary black-hole systems with spins aligned with the orbital angular
momentum are of special interest, as studies indicate that this configuration
is preferred in nature. If the spins of the two bodies differ, there can be a
prominent beaming of the gravitational radiation during the late plunge,
causing a recoil of the final merged black hole. We perform an accurate and
systematic study of recoil velocities from a sequence of equal-mass black holes
whose spins are aligned with the orbital angular momentum, and whose individual
spins range from a = +0.584 to -0.584. In this way we extend and refine the
results of a previous study and arrive at a consistent maximum recoil of 448 +-
5 km/s for anti-aligned models as well as to a phenomenological expression for
the recoil velocity as a function of spin ratio. This relation highlights a
nonlinear behavior, not predicted by the PN estimates, and can be readily
employed in astrophysical studies on the evolution of binary black holes in
massive galaxies. An essential result of our analysis is the identification of
different stages in the waveform, including a transient due to lack of an
initial linear momentum in the initial data. Furthermore we are able to
identify a pair of terms which are largely responsible for the kick, indicating
that an accurate computation can be obtained from modes up to l=3. Finally, we
provide accurate measures of the radiated energy and angular momentum, finding
these to increase linearly with the spin ratio, and derive simple expressions
for the final spin and the radiated angular momentum which can be easily
implemented in N-body simulations of compact stellar systems. Our code is
calibrated with strict convergence tests and we verify the correctness of our
measurements by using multiple independent methods whenever possible.Comment: 24 pages, 15 figures, 5 table
Binary black hole merger in the extreme mass ratio limit
We discuss the transition from quasi-circular inspiral to plunge of a system
of two nonrotating black holes of masses and in the extreme mass
ratio limit . In the spirit of the Effective One Body
(EOB) approach to the general relativistic dynamics of binary systems, the
dynamics of the two black hole system is represented in terms of an effective
particle of mass moving in a (quasi-)Schwarzschild
background of mass and submitted to an
radiation reaction force defined by Pad\'e resumming high-order Post-Newtonian
results. We then complete this approach by numerically computing, \`a la
Regge-Wheeler-Zerilli, the gravitational radiation emitted by such a particle.
Several tests of the numerical procedure are presented. We focus on
gravitational waveforms and the related energy and angular momentum losses. We
view this work as a contribution to the matching between analytical and
numerical methods within an EOB-type framework.Comment: 14 pages, six figures. Revised version. To appear in the CQG special
issue based around New Frontiers in Numerical Relativity conference, Golm
(Germany), July 17-21 200
Are moving punctures equivalent to moving black holes?
When simulating the inspiral and coalescence of a binary black-hole system,
special care needs to be taken in handling the singularities. Two main
techniques are used in numerical-relativity simulations: A first and more
traditional one ``excises'' a spatial neighbourhood of the singularity from the
numerical grid on each spacelike hypersurface. A second and more recent one,
instead, begins with a ``puncture'' solution and then evolves the full
3-metric, including the singular point. In the continuum limit, excision is
justified by the light-cone structure of the Einstein equations and, in
practice, can give accurate numerical solutions when suitable discretizations
are used. However, because the field variables are non-differentiable at the
puncture, there is no proof that the moving-punctures technique is correct,
particularly in the discrete case. To investigate this question we use both
techniques to evolve a binary system of equal-mass non-spinning black holes. We
compare the evolution of two curvature 4-scalars with proper time along the
invariantly-defined worldline midway between the two black holes, using
Richardson extrapolation to reduce the influence of finite-difference
truncation errors. We find that the excision and moving-punctures evolutions
produce the same invariants along that worldline, and thus the same spacetimes
throughout that worldline's causal past. This provides convincing evidence that
moving-punctures are indeed equivalent to moving black holes.Comment: 4 pages, 3 eps color figures; v2 = major revisions to introduction &
conclusions based on referee comments, but no change in analysis or result
Simulation of Binary Black Hole Spacetimes with a Harmonic Evolution Scheme
A numerical solution scheme for the Einstein field equations based on
generalized harmonic coordinates is described, focusing on details not provided
before in the literature and that are of particular relevance to the binary
black hole problem. This includes demonstrations of the effectiveness of
constraint damping, and how the time slicing can be controlled through the use
of a source function evolution equation. In addition, some results from an
ongoing study of binary black hole coalescence, where the black holes are
formed via scalar field collapse, are shown. Scalar fields offer a convenient
route to exploring certain aspects of black hole interactions, and one
interesting, though tentative suggestion from this early study is that behavior
reminiscent of "zoom-whirl" orbits in particle trajectories is also present in
the merger of equal mass, non-spinning binaries, with appropriately fine-tuned
initial conditions.Comment: 16 pages, 14 figures; replaced with published versio
Beam Test of Silicon Strip Sensors for the ZEUS Micro Vertex Detector
For the HERA upgrade, the ZEUS experiment has designed and installed a high
precision Micro Vertex Detector (MVD) using single sided micro-strip sensors
with capacitive charge division. The sensors have a readout pitch of 120
microns, with five intermediate strips (20 micron strip pitch). An extensive
test program has been carried out at the DESY-II testbeam facility. In this
paper we describe the setup developed to test the ZEUS MVD sensors and the
results obtained on both irradiated and non-irradiated single sided micro-strip
detectors with rectangular and trapezoidal geometries. The performances of the
sensors coupled to the readout electronics (HELIX chip, version 2.2) have been
studied in detail, achieving a good description by a Monte Carlo simulation.
Measurements of the position resolution as a function of the angle of incidence
are presented, focusing in particular on the comparison between standard and
newly developed reconstruction algorithms.Comment: 41 pages, 21 figures, 2 tables, accepted for publication in NIM
Gauge conditions for long-term numerical black hole evolutions without excision
Numerical relativity has faced the problem that standard 3+1 simulations of
black hole spacetimes without singularity excision and with singularity
avoiding lapse and vanishing shift fail after an evolution time of around
30-40M due to the so-called slice stretching. We discuss lapse and shift
conditions for the non-excision case that effectively cure slice stretching and
allow run times of 1000M and more.Comment: 19 pages, 14 figures, REVTeX, Added a missing Acknowledgmen
- …