15 research outputs found

    Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism

    Get PDF
    Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.Peer reviewe

    Transcriptome analysis of the oriental melon (Cucumis melo L. var. makuwa) during fruit development

    No full text
    Background The oriental melon (Cucumis melo L. var. makuwa) is one of the most important cultivated cucurbits grown widely in Korea, Japan, and northern China. It is cultivated because its fruit has a sweet aromatic flavor and is rich in soluble sugars, organic acids, minerals, and vitamins. In order to elucidate the genetic and molecular basis of the developmental changes that determine size, color, and sugar contents of the fruit, we performed de novo transcriptome sequencing to analyze the genes expressed during fruit development. Results We identified a total of 47,666 of representative loci from 100,875 transcripts and functionally annotated 33,963 of the loci based on orthologs in Arabidopsis thaliana. Among those loci, we identified 5,173 differentially expressed genes, which were classified into 14 clusters base on the modulation of their expression patterns. The expression patterns suggested that the differentially expressed genes were related to fruit development and maturation through diverse metabolic pathways. Analyses based on gene set enrichment and the pathways described in the Kyoto Encyclopedia of Genes and Genomes suggested that the expression of genes involved in starch and sucrose metabolism and carotenoid biosynthesis were regulated dynamically during fruit development and subsequent maturation. Conclusion Our results provide the gene expression patterns related to different stages of fruit development and maturation in the oriental melon. The expression patterns give clues about important regulatory mechanisms, especially those involving starch, sugar, and carotenoid biosynthesis, in the development of the oriental melon fruit

    Prometheus, an omics portal for interkingdom comparative genomic analyses.

    No full text
    Functional analyses of genes are crucial for unveiling biological responses, genetic engineering, and developing new medicines. However, functional analyses have largely been restricted to model organisms, representing a major hurdle for functional studies and industrial applications. To resolve this, comparative genome analyses can be used to provide clues to gene functions as well as their evolutionary history. To this end, we present Prometheus, a web-based omics portal that contains more than 17,215 sequences from prokaryotic and eukaryotic genomes. This portal supports interkingdom comparative analyses via a domain architecture-based gene identification system and Gene Search, and users can easily and rapidly identify single or entire gene sets in specific pathways. Bioinformatics tools for further analyses are provided in Prometheus or through Bio-Express, a cloud-based bioinformatics analysis platform. Prometheus is a new paradigm for comparative analyses of large amounts of genomic information

    TGFam-Finder: a novel solution for target-gene family annotation in plants

    No full text
    Whole-genome annotation error that omits essential protein-coding genes hinders further research. We developed Target Gene Family Finder (TGFam-Finder), an alternative tool for the structural annotation of protein-coding genes containing target domain(s) of interest in plant genomes. TGFam-Finder took considerably reduced annotation run-time and improved accuracy compared to conventional annotation tools. Large-scale re-annotation of 50 plant genomes identified an average of 150, 166 and 86 additional far-red-impaired response 1, nucleotide-binding and leucine-rich-repeat, and cytochrome P450 genes, respectively, that were missed in previous annotations. We detected significantly higher number of translated genes in the new annotations using mass spectrometry data from seven plant species compared to previous annotations. TGFam-Finder along with the new gene models can provide an optimized platform for comprehensive functional, comparative, and evolutionary studies in plants.11Ysciescopu
    corecore