280 research outputs found

    Dense Gas Formation via Collision-induced Magnetic Reconnection in a Disk Galaxy with a BiSymmetric Spiral Magnetic Field

    Full text link
    Recently, a collision-induced magnetic reconnection (CMR) mechanism was proposed to explain a dense filament formation in the Orion A giant molecular cloud. A natural question is that whether CMR works elsewhere in the Galaxy. As an initial attempt to answer the question, this paper investigates the triggering of CMR and the production of dense gas in a flat-rotating disk with a modified BiSymmetric Spiral (BSS) magnetic field. Cloud-cloud collisions at field reversals in the disk are modeled with the Athena++ code. Under the condition that is representative of the warm neutral medium, the cloud-cloud collision successfully triggers CMR at different disk radii. However, dense gas formation is hindered by the dominating thermal pressure, unless a moderately stronger initial field 5μ\gtrsim5\muG is present. The strong-field model, having a larger Lundquist number SLS_L and lower plasma β\beta, activates the plasmoid instability in the collision midplane, which is otherwise suppressed by the disk rotation. We speculate that CMR can be common if more clouds collide along field reversals. However, to witness the CMR process in numerical simulations, we need to significantly resolve the collision midplane with a spatial dynamic range 106\gtrsim10^6. If Milky Way spiral arms indeed coincide with field reversals in BSS, it is possible that CMR creates or maintains dense gas in the arms. High-resolution, high-sensitivity Zeeman/Faraday-Rotation observations are crucial for finding CMR candidates that have helical fields.Comment: 21 pages, 11 figures, 1 table, accepted by Ap

    The Deuterium Fractionation Timescale in Dense Cloud Cores: A Parameter Space Exploration

    Full text link
    The deuterium fraction [N2_2D+^+]/[N2_2H+^+], may provide information about the ages of dense, cold gas structures, important to compare with dynamical models of cloud core formation and evolution. Here we introduce a complete chemical network with species containing up to three atoms, with the exception of the Oxygen chemistry, where reactions involving H3_3O+^+ and its deuterated forms have been added, significantly improving the consistency with comprehensive chemical networks. Deuterium chemistry and spin states of H2_2 and H3+_3^+ isotopologues are included in this primarily gas-phase chemical model. We investigate dependence of deuterium chemistry on model parameters: density (nHn_{\rm H}), temperature, cosmic ray ionization rate, and gas-phase depletion factor of heavy elements (fDf_{\rm D}). We also explore the effects of time-dependent freeze-out of gas-phase species and dynamical evolution of density at various rates relative to free-fall collapse. For a broad range of model parameters, the timescales to reach large values of DfracN2H+0.1D_{\rm frac}^{\rm N_2H^+} \gtrsim 0.1, observed in some low- and high-mass starless cores, are relatively long compared to the local free-fall timescale. These conclusions are unaffected by introducing time-dependent freeze-out and considering models with evolving density, unless the initial fDf_{\rm D} \gtrsim 10. For fiducial model parameters, achieving DfracN2H+0.1D_{\rm frac}^{\rm N_2H^+} \gtrsim 0.1 requires collapse to be proceeding at rates at least several times slower than that of free-fall collapse, perhaps indicating a dynamically important role for magnetic fields in the support of starless cores and thus the regulation of star formation.Comment: 23 pages, 18 figures, accepted by Ap

    Structure, Dynamics and Deuterium Fractionation of Massive Pre-Stellar Cores

    Get PDF
    High levels of deuterium fraction in N2_2H+^+ are observed in some pre-stellar cores. Single-zone chemical models find that the timescale required to reach observed values (DfracN2H+N2D+/N2H+0.1D_{\rm frac}^{{\rm N}_2{\rm H}^+} \equiv {\rm N}_2{\rm D}^+/{\rm N}_2{\rm H}^+ \gtrsim 0.1) is longer than the free-fall time, possibly ten times longer. Here, we explore the deuteration of turbulent, magnetized cores with 3D magnetohydrodynamics simulations. We use an approximate chemical model to follow the growth in abundances of N2_2H+^+ and N2_2D+^+. We then examine the dynamics of the core using each tracer for comparison to observations. We find that the velocity dispersion of the core as traced by N2_2D+^+ appears slightly sub-virial compared to predictions of the Turbulent Core Model of McKee & Tan, except at late times just before the onset of protostar formation. By varying the initial mass surface density, the magnetic energy, the chemical age, and the ortho-to-para ratio of H2_2, we also determine the physical and temporal properties required for high deuteration. We find that low initial ortho-to-para ratios (0.01\lesssim 0.01) and/or multiple free-fall times (3\gtrsim 3) of prior chemical evolution are necessary to reach the observed values of deuterium fraction in pre-stellar cores.Comment: 20 pages, 18 figures; accepted for publication in Ap

    Zooming in to Massive Star Birth

    Get PDF
    We present high resolution (0.2", 1000 AU) 1.3 mm ALMA observations of massive infrared dark cloud clump, G028.37+00.07-C1, thought to harbor the early stages of massive star formation. Using N2D+\rm N_2D^+(3-2) we resolve the previously identified C1-S core, separating the bulk of its emission from two nearby protostellar sources. C1-S is thus identified as a massive (50M\sim50\:M_\odot), compact (0.1\sim0.1\:pc diameter) starless core, e.g., with no signs of outflow activity. Being highly deuterated, this is a promising candidate for a pre-stellar core on the verge of collapse. An analysis of its dynamical state indicates a sub-virial velocity dispersion compared to a trans-Alfv\'enic turbulent core model. However, virial equilibrium could be achieved with sub-Alfv\'enic conditions involving 2\sim2\:mG magnetic field strengths.Comment: 19 pages, 15 figures, 4 tables, accepted by Ap

    X Marks the Spot: Nexus of Filaments, Cores, and Outflows in a Young Star-Forming Region

    Get PDF
    We present a multiwavelength investigation of a region of a nearby giant molecular cloud that is distinguished by a minimal level of star formation activity. With our new 12CO(J=2-1) and 13CO(J=2-1) observations of a remote region within the middle of the California molecular cloud, we aim to investigate the relationship between filaments, cores, and a molecular outflow in a relatively pristine environment. An extinction map of the region from Herschel Space Observatory observations reveals the presence of two 2-pc-long filaments radiating from a high-extinction clump. Using the 13CO observations, we show that the filaments have coherent velocity gradients and that their mass-per-unit-lengths may exceed the critical value above which filaments are gravitationally unstable. The region exhibits structure with eight cores, at least one of which is a starless, prestellar core. We identify a low-velocity, low-mass molecular outflow that may be driven by a flat spectrum protostar. The outflow does not appear to be responsible for driving the turbulence in the core with which it is associated, nor does it provide significant support against gravitational collapse.Comment: Accepted for publication in the Astrophysical Journa

    The CARMA-NRO Orion Survey

    Get PDF
    We present the first results from a new, high-resolution ^(12)CO(1–0), ^(13)CO(1–0), and C^(18)O(1–0) molecular-line survey of the Orion A cloud, hereafter referred to as the CARMA-NRO Orion Survey. CARMA observations have been combined with single-dish data from the Nobeyama 45 m telescope to provide extended images at about 0.01 pc resolution, with a dynamic range of approximately 1200 in spatial scale. Here we describe the practical details of the data combination in uv space, including flux scale matching, the conversion of single-dish data to visibilities, and joint deconvolution of single-dish and interferometric data. A Δ-variance analysis indicates that no artifacts are caused by combining data from the two instruments. Initial analysis of the data cubes, including moment maps, average spectra, channel maps, position–velocity diagrams, excitation temperature, column density, and line ratio maps, provides evidence of complex and interesting structures such as filaments, bipolar outflows, shells, bubbles, and photo-eroded pillars. The implications for star formation processes are profound, and follow-up scientific studies by the CARMA-NRO Orion team are now underway. We plan to make all the data products described here generally accessible; some are already available at https://dataverse.harvard.edu/dataverse/CARMA-NRO-Orion

    The Core Mass Function in the Massive Protocluster G286.21+0.17 revealed by ALMA

    Full text link
    We study the core mass function (CMF) of the massive protocluster G286.21+0.17 with the Atacama Large Millimeter/submillimeter Array via 1.3~mm continuum emission at a resolution of 1.0\arcsec\ (2500~au). We have mapped a field of 5.3\arcmin×\times5.3\arcmin\ centered on the protocluster clump. We measure the CMF in the central region, exploring various core detection algorithms, which give source numbers ranging from 60 to 125, depending on parameter selection. We estimate completeness corrections due to imperfect flux recovery and core identification via artificial core insertion experiments. For masses M1MM\gtrsim1\:M_\odot, the fiducial dendrogram-identified CMF can be fit with a power law of the form dN/dlogMMα{\rm{d}}N/{\rm{d}}{\rm{log}}M\propto{M}^{-\alpha} with α1.24±0.17\alpha \simeq1.24\pm0.17, slightly shallower than, but still consistent with, the index of the Salpeter stellar initial mass function of 1.35. Clumpfind-identified CMFs are significantly shallower with α0.64±0.13\alpha\simeq0.64\pm0.13. While raw CMFs show a peak near 1M1\:M_\odot, completeness-corrected CMFs are consistent with a single power law extending down to 0.5M\sim 0.5\:M_\odot, with only a tentative indication of a shallowing of the slope around 1M\sim1\:M_\odot. We discuss the implications of these results for star and star cluster formation theories.Comment: 11 pages, accepted by Ap

    The Core Mass Function Across Galactic Environments. II. Infrared Dark Cloud Clumps

    Get PDF
    We study the core mass function (CMF) within 32 dense clumps in seven infrared dark clouds (IRDCs) with the Atacama Large Millimeter/submillimeter Array (ALMA) via 1.3~mm continuum emission at a resolution of \sim1". We have identified 107 cores with the dendrogram algorithm, with a median radius of about 0.02 pc. Their masses range from 0.261 to 178 MM_{\odot}. After applying completeness corrections, we fit the combined IRDC CMF with a power law of the form dN/dlogMMαd N / d\:{\rm log} M \propto M^{-\alpha} and derive an index of α0.86±0.11\alpha\simeq0.86\pm0.11 for M0.79MM \geq 0.79\:M_\odot and α0.70±0.13\alpha\simeq0.70\pm0.13 for M1.26MM\geq 1.26\:M_\odot, which is a significantly more top-heavy distribution than the Salpeter stellar initial mass function (IMF) index of 1.35. We also make a direct comparison of these IRDC clump CMF results to those measured in the more evolved protocluster G286 derived with similar methods, which have α1.29±0.19\alpha\simeq1.29\pm0.19 and 1.08±0.271.08\pm0.27 in these mass ranges, respectively. These results provide a hint that, especially for the M1.26MM\geq 1.26\:M_\odot range where completeness corrections are modest, the CMF in high pressure, early-stage environments of IRDC clumps may be top-heavy compared to that in the more evolved, global environment of the G286 protoclusters. However, larger samples of cores probing these different environments are needed to better establish the robustness of this potential CMF variation.Comment: Accepted to ApJ, 15 pages, 7 figure
    corecore