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ABSTRACT

High levels of deuterium fraction in N2H
+ are observed in some pre-stellar cores. Single-zone chemical models

find that the timescale required to reach observed values ( º + ++
D N D N H 0.1frac

N H
2 2

2 ) is longer than the free-fall
time, possibly 10 times longer. Here, we explore the deuteration of turbulent, magnetized cores with 3D
magnetohydrodynamics simulations. We use an approximate chemical model to follow the growth in abundances
of N2H

+ and N2D
+. We then examine the dynamics of the core using each tracer for comparison to observations.

We find that the velocity dispersion of the core as traced by N2D
+ appears slightly sub-virial compared to

predictions of the Turbulent Core Model of McKee & Tan, except at late times just before the onset of protostar
formation. By varying the initial mass surface density, the magnetic energy, the chemical age, and the ortho-to-para
ratio of H2, we also determine the physical and temporal properties required for high deuteration. We find that low
initial ortho-to-para ratios (0.01) and/or multiple free-fall times (3) of prior chemical evolution are necessary to
reach the observed values of deuterium fraction in pre-stellar cores.

Key words: astrochemistry – ISM: clouds – magnetohydrodynamics (MHD) – methods: numerical – stars:
formation – turbulence

1. INTRODUCTION

1.1. Massive Star Formation

Massive stars play a central role in galactic evolution
through feedback and metal enrichment, yet the physical
processes and conditions involved in massive star formation
remain uncertain (Tan et al. 2014). The relative rarity of
massive stars and thus their typical large distances from us,
along with their deeply embedded formation environments,
make it difficult to observe details of the process of massive
star formation.

There are two main theories for massive star formation: (1)
core accretion models, e.g., the Turbulent Core Accretion
model (McKee & Tan 2003, hereafter MT03), which assumes
near-virialized starting conditions for relatively ordered
collapse; and (2) the Competitive Accretion model (Bonnell
et al. 2001), which posits fragmentation and subsequent
accretion by multiple stars from a turbulent, globally collapsing
medium. Distinguishing these two scenarios relies on disen-
tangling the numerous physical processes involved, such as
turbulent motions, magnetic fields, and feedback.

Numerical modeling is one means to extricate the various
processes. Previous simulations of massive star formation have
focused on the roles of turbulence, magnetic fields, and
radiation in clump fragmentation. Girichidis et al. (2011)
investigated the fragmentation of hydrodynamic clumps,
examining the effect of the initial density profile and turbulent
driving. The authors found that single massive stars are more
likely to form from centrally concentrated initial conditions,
while the details of the turbulence are relatively unimportant.
Numerous authors (Krumholz et al. 2007, 2010; Commerçon
et al. 2011; Cunningham et al. 2011; Peters et al. 2011; Myers
et al. 2013) have demonstrated that radiative feedback from
protostars inhibits fragmentation of the clump. Magnetohy-
drodynamics (MHD) simulations, both neglecting radiation

(Hennebelle et al. 2011; Seifried et al. 2011, 2012) and with
radiation (Commerçon et al. 2011; Peters et al. 2011; Myers
et al. 2013), indicate that even a weak magnetic field
suppresses clump fragmentation, and increasing the field
strength further reduces the fragmentation.
In all of the aforementioned MHD numerical studies, the

magnetic field strength is initially supercritical, i.e., the field
cannot prevent gravitational collapse. The central pre-stellar
core contracts rapidly, forming a protostar within one to two
free-fall times. Yet the timescale of core collapse remains an
open question. In the Competitive Accretion model, cores form
and rapidly collapse on the order of the free-fall time. In the
Turbulent Core model, the cores persist longer—at least one
dynamical time—possibly supported by magnetic fields and
turbulence near virial balance. Indeed, some observed cores
exhibit supersonic linewidths consistent with virial balance
(Tan et al. 2013; Kong et al. 2016a). Yet, velocity dispersions
due to virial equilibrium or energy equipartition (consistent
with free-fall) differ by only a factor of 2 (Vázquez-Semadeni
et al. 2007). Therefore, even a clear distinction between virial
equilibrium and free-fall collapse based on velocity dispersion
seems difficult. However, we note that where they have been
measured, observed infall speeds generally seem to be small,
i.e., ∼1/3 of the free-fall velocity (Wyrowski et al. 2016).

1.2. Deuteration as a Chemical Clock

An alternative means to probe the age and state of starless
cores is using chemical tracers, in particular deuterated
molecules. In sufficiently dense ( >n 10H

5 cm−3), cold
( <T 20 K) environments, CO freeze-out opens a pathway for
ion–neutral reactions that increase the deuterium fraction, i.e.,
the ratio of deuterated to non-deuterated species, Dfrac. For a
full review of deuteration processes, see Ceccarelli et al.
(2014). Observationally, deuterated molecules are excellent

The Astrophysical Journal, 833:274 (18pp), 2016 December 20 doi:10.3847/1538-4357/833/2/274
© 2016. The American Astronomical Society. All rights reserved.

1

mailto:mgoodson@unc.edu
http://dx.doi.org/10.3847/1538-4357/833/2/274
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/833/2/274&domain=pdf&date_stamp=2016-12-21
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/833/2/274&domain=pdf&date_stamp=2016-12-21


probes of pre-stellar gas. Caselli et al. (2001) traced low-mass
star-forming regions with N2D

+ and DCO+, finding deuterium
fractions D 0.1frac , several orders of magnitude above the
cosmic deuterium ratio (D/H ~ -10 5). Similarly, (Tan
et al. 2013, hereafter T13) identified high-mass star-forming
regions in infrared dark clouds (IRDCs) with the same
deuterated molecules. Kong et al. (2016b, hereafter K16) has
subsequently estimated the deuterium fraction of N2H

+ in these
regions to be of comparable values to those in low-mass pre-
stellar cores ( º + ++

D N D N Hfrac
N H

2 2
2  0.1) (see also Fontani

et al. 2011).
As deuteration is expected to begin only when pre-stellar

core conditions are satisfied, the deuterium fraction may be a
useful estimator of core age. Kong et al. (2015, hereafter K15)
developed a time-dependent astrochemical network to model
the evolution of deuterium-bearing molecules. The authors
followed the chemistry in a single zone with fixed physical
conditions or with simple density evolution. Under typical core
conditions, the K15 models suggest that the deuteration process
is slow, with up to 10 free-fall times required to reach the
observed values of

+
Dfrac

N H2 .
Moving beyond single-zone chemical models is a difficult

task, because the complex reaction network requires extensive
computational resources. Pagani et al. (2013) coupled the
deuterium network of Pagani et al. (2009) with a 1D spherically
symmetric hydrodynamic calculation. The simulations fol-
lowed deuteration in 200 radial zones during collapse of a low-
mass pre-stellar core from a uniform, static state. In disagree-
ment with K15, Pagani et al. (2013) determined that fast
collapse is preferred, as steady-state abundances determined
from the model were typically much higher than observed.
However, the models of Pagani et al. (2009) and Pagani et al.
(2013) begin with very high initial depletion factors, which
greatly shortens the deuteration timescale. A full discussion and
comparison are presented in K15, but it is worth noting that,
given similar initial conditions, the models of K15 agree with
Pagani et al. (2009) to within a factor of 3.

If large-scale magnetic fields are present, the assumption of
radial symmetry during collapse will not hold, because flux-
freezing prevents significant collapse in directions perpend-
icular to the field. Further, the turbulent motions within the core
are not fully captured in 1D simulations. Indeed, the chemical
evolution may be altered by nonlinear effects such as density
fluctuations and turbulent diffusion. Implementing a full
chemical network in high-resolution 3D simulations is
currently not feasible given computational limits. One option
may be to reduce the number of reactions and reactants;
however, this would negatively affect the accuracy of the
chemistry. Here, we develop an alternative approach.

We construct an approximate deuterium chemistry model
built on the full astrochemical network results of K15. By
parameterizing the results across a wide range of densities, we
formulate a robust and efficient method to follow the growth
and deuteration of N2H

+ in 3D MHD simulations of massive
core collapse. We generate a turbulent, magnetized pre-stellar
core according to the paradigm of MT03, and we model the
collapse of the core until the first protostar forms. We
simultaneously follow the chemical evolution of N2H

+ and
N2D

+ and compare to observed massive pre-stellar cores. By
varying the initial conditions, such as the mass surface density,
magnetic energy, chemical age, and initial ortho-to-para ratio of

H2, we can estimate the core properties necessary to match
observed deuterium abundances.
We observe in our simulations that the collapse occurs on

roughly the free-fall time, regardless of the initial mass surface
density or magnetic field strength. We conclude that reaching
the observed deuterium fractions requires significant prior
chemical evolution, low initial ortho-to-para ratio, and/or
slower collapse, possibly by stronger magnetic fields or
sustained turbulence.
We outline our numerical methods, including initial condi-

tions and chemical model, in Section 2. The results of our
simulations are presented and discussed in Section 3. We
discuss the implications for massive star formation in Section 4
before concluding in Section 5.

2. METHODS

We use a modified version of ATHENA (Stone et al. 2008)
version 4.2 to solve the equations of ideal, inviscid MHD:
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with the density ρ, the velocity vector u, the magnetic field
vector B, the thermal pressure P, the unit dyad I, and the total
energy density E:
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We use a passive color field C to trace core material:

r
r

¶
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We also evolve several scalar fields to trace the chemistry:

r
r

¶
¶

+  =u
X

t
X S X 7

[ ] · ( [ ]) ([ ]) ( )

with the fractional abundance X[ ] for some species X relative to
hydrogen, and a source term S. Full details of the chemical
model are presented in Section 2.2.
We use the directionally unsplit van Leer (VL) integrator

(Stone & Gardiner 2009) with second-order reconstruction in
the primitive variables (Colella & Woodward 1984) and the
HLLD Riemann solver (Toro 2009). Simulations are performed
on Cartesian grids in three dimensions. To obtain an
approximately isothermal equation of state, we set the ratio
of specific heats g = =C C 1.001P V . We do not include
radiation pressure or feedback; we do include self-gravity.

2.1. Setup and Initial Conditions

We initialize a spherical core according to the relations
of MT03. We set the core mass = M M60c and the power-
law exponent of the density =rk 1.5, such that ρ∞ r−kρ. For
our fiducial core, we set the mass surface density of the clump
S = 0.3cl g cm−2, consistent with the estimates of cores

2
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observed by T13. With these values, MT03 prescribes the
radius of the core

⎛
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⎞
⎠⎟=

S
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-

-

R 0.057
1 g cm

pc 0.10 pc 8c
cl

2

1 2

( )

and the number density of hydrogen at the surface
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 ´

-
-

-

n 1.16 10
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where the value after the arrow is for the fiducial model. The
mean number density in the core is = ´n 1.97 105¯ cm−3, and
the average free-fall time of the core is

p
r

= t
G

3

32
76 kyr, 10ff

¯
( )

with average density r m= n mH¯ ¯ , the mean molecular weight
m = 2.33, and the mass of hydrogen mH. To trace the core, we
initialize the passive color field C to unity for r Rc and zero
otherwise. We also perform simulations with lower initial mass
surface density of the surrounding clump (S = 0.1cl g cm−2);
the relevant parameters for both cases are summarized in
Table 1.

2.1.1. Density Structure

The core has a density profile r µ -r r 1.5( ) , which is
consistent with observations of massive pre-stellar cores
(Butler & Tan 2012). We set the core to a constant temperature

=T 15c K; thus the thermal pressure in the core follows the
same power law as the density. The sound speed in the core

m= =c k T m 0.2s B H( ) kms−1, with the Boltzmann con-
stant kB. To prevent divergence as r 0, we flatten the profile
over an inner radius, =R R0.15f c. We calculate the central
density = +  ´rn n R R1.0 1.99 10k

c s c f
6[ ( ) ] cm−3. We

impose an order-of-magnitude jump in the density at the core
surface, which is smoothed by a hyperbolic tangent profile with

=R R0.05s c. The density in the ambient medium is constant at
=n n0.10 s. The overall density profile is given by

⎛
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The ambient temperature T0 is determined by thermal pressure
balance with the core: = =T T10 1500 c K. This mimics the
effective pressure of the surrounding clump medium, which is
expected to be dominated by non-thermal mechanisms, e.g.,
turbulence. The actual temperature of the clump is expected to
be quite similar to that of the core.

The core is centered in a cubic simulation box of side length
= L R5 0.52c pc with spatial resolution

d = L 512 213 au. We use periodic boundary conditions
to prevent gravitational evacuation at the box edges; the core is
sufficiently padded to prevent any interactions with the
boundaries. We use a periodic fast Fourier transform solver
to calculate the gravitational potential. Eventually runaway
collapse in a few cells drives the global time step to nearly zero.
The collapse could be followed longer by the addition of sink
particles, but as we are only interested in pre-stellar conditions,
we terminate the simulation at this point.

2.1.2. Magnetic Fields

We initialize a cylindrically symmetric magnetic field in the
z-direction, similar to the field geometry of Myers et al. (2013).
The field strength is determined by the desired mass-to-flux
ratio normalized to the critical value (Mouschovias &
Spitzer 1976):

m
p

= =
FF

F

M

M

G M2
, 12

1 2
( )

where MΦ is the critical mass-to-flux value and Φ is the
magnetic flux through the center of the core. To maintain
approximately constant mF throughout the core, the field
strength decreases as -r ;0.5 then the magnetic pressure

p µ -B r82 1( ) , as in MT03. For a given mF, we calculate the
field strength at the surface of the core Bs:

m
= 
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B
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1 2
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Similar to our treatment of the density, we smooth the magnetic
field profile both at the center of the core and at its edge. The
field in the ambient medium is uniform at =B B0 s, and the
overall magnetic field profile is given by
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where x º +x y2 2 is the distance from the z-axis and Bc is
the central field strength, given by = +B B R R1.0c s c f

0.5[ ( ) ].
Our fiducial simulation uses a slightly supercritical mass-to-
flux ratio (m =F 2), in accord with observations of dense
molecular gas (Crutcher 2012); then the central field strength

B 0.80c mG. We also perform simulations with a stronger
magnetic field, corresponding to critical mass-to-flux ratio
(m =F 1). Relevant parameters in both cases are summarized in
Table 1.

Table 1
Summary of Simulations

Scl mF Mc Rc n̄ tff Bc α σ δ

Run Name (g cm−2) ( M ) (pc) (cm−3) (kyr) (mG) (km s−1) (au)

S3M2 0.3 2 60 0.104 1.97×105 76 0.803 2 0.99 213
S1M2 0.1 2 60 0.180 3.79×104 173 0.268 2 0.76 365
S3M1 0.3 1 60 0.104 1.97×105 76 1.606 2 0.99 213
S1M1 0.1 1 60 0.180 3.79×104 173 0.536 2 0.76 365

Note. Fiducial simulation is S3M2.
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2.1.3. Turbulence

We initialize supersonic turbulence in the cores with random
velocity perturbations. The turbulence is generated in a method
similar to that described in Mac Low (1999): amplitudes are
drawn from a random Gaussian with a Fourier power spectrum
of form d µ -v kk

2∣ ∣ , with p< <kL N1.0 2 2, where k is the
wavenumber, L is the box size, and N is the number of cells.
We apply fully solenoidal (divergence-free) perturbations. The
initial perturbation has a one-dimensional velocity dispersion σ

calculated from the virial relation, a sº R GM5 2
c c( ) (Bertoldi

& McKee 1992). Because we do not initialize any density
perturbations, we set the core to be initially super virial
(a = 2); the initial velocity dispersion in the fiducial simula-
tion is then s  0.99 kms−1. This value is close to the
velocity dispersion of a virialized core including external

pressure terms, given in T13:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟s =

S



-
-

-



M

M
1.09

60 1 g cm
km s

0.80 km s . 15

c
c,vir

1 4
cl

2

1 4
1

1 ( )

We do not drive the turbulence; energy is only injected at
initialization.

2.2. Chemistry

We follow the evolution of two molecular species in our
simulations: N2H

+ and N2D
+. The fractional abundance of

each species is advected with the fluid as a passive color field
(Equation (7)). We use an approximate chemical model based
on the results of K15, in which the authors presented a time-
dependent chemical network for the evolution of N2H

+ and
N2D

+ in a single-zone approximation. We combine results
from across the K15 parameter space into a unified model to
predict the initial chemical abundances and growth rates.
In K15, the authors examined the influence of numerous

physical conditions and found that the results depend strongly
on the number density of hydrogen, nH, and the initial ortho-to-
para ratio of H2, OPR0

H2. Deuteration is most efficient when the
number density is high and OPRH2 is low. Unfortunately,
OPRH2 is not easy to estimate from observations. The statistical

Figure 1. Time evolution of chemical number density and deuterium fraction
from K15 for various hydrogen number densities nH. The number density is
computed as n XH [ ], where X[ ] is the relative abundance of species X. From top
to bottom, the number density of N2H

+, of N2D
+, and the deuterium fraction,

º + ++
D N D N Hfrac

N H
2 2

2 . Results are obtained with K15 fiducial parameters
except that OPR0

H2=0.1. The time required to reach equilibrium decreases
with increasing density. Additionally, the equilibrium values for the abundance
of both species and the deuterium fraction increase with increasing density,
reaching

+
Dfrac

N H2  0.3 at = -n 10 cmH
9 3.

Figure 2. Example look-up grid for the chemical evolution of (top) [N2H
+] and

(bottom) [N2D
+] in our simulation. The grid shown is for OPR0

H2=0.1 and is
generated from the chemical network modeling of K15. A growth rate Xd[ ] dt
is estimated for each species X using bilinear interpolation based on the current
hydrogen number density nH and relative abundance X[ ].
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expectation for OPRH2 at H2 formation on grains is
OPRH2=3.0; OPRH2 then decreases as ortho-H2 is destroyed.
We test the effect of different initial OPRH2 values by including
three sets of K15 simulations: OPR0

H2=1.0, 0.1, and 0.01.
For a given OPR0

H2, we use a suite of 55 uniform-density
models from K15 to construct our approximate model,
spanning hydrogen number densities from 103 to 109cm−3.
All models use the fiducial parameters of K15: gas temperature
=T 15 K, cosmic-ray ionization rate z = ´ - -2.5 10 s17 1,

heavy-element depletion factor =f 10D , radiation field
(relative to Habing field) =G 10 , and visual extinction

=A 30 magV . We note that, while z » ´ - -3 10 s16 1 in
diffuse gas (Indriolo & McCall 2012), cosmic rays are
attenuated in dense starless cores to a value approximately an
order of magnitude lower (Padovani et al. 2009; Keto &
Caselli 2010). We also note that for these conditions of high
extinction the radiation field plays a negligible role. Each K15
model provides the time evolution of the fractional abundance
of species X, denoted X t[ ]( ), over 100Myr. Figure 1 presents
the fiducial results of K15 for varying hydrogen number
density nH at OPR0

H2=0.1, with the deuterium frac-
tion º + ++

D N D N Hfrac
N H

2 2
2 .

2.2.1. Chemical Age

To set the initial condition for the molecular abundances, we
must make assumptions about the previous history of the gas.

Deuteration begins as CO starts to freeze out, which occurred
prior to t=0 for our simulation; the exact amount of prior time
is unknown. We therefore investigate four chemical starting
times, tchem, which for simplicity we make multiples of the
mean core free-fall time: tchem=0, 1, 3, and 10tff . For

=t 0chem , we assume [N2H
+]=[N2D

+]=0.0. For all other
tchem, we reference the constant-density runs of K15. We first
interpolate the K15 results using a cubic spline onto an nH–t
grid of 10002 support points. This finer grid then functions as a
look-up table; given a particular starting time tchem and density
nH, we estimate the chemical abundances using bilinear
interpolation. This method implicitly assumes that the gas has
been in its current configuration for the duration of tchem. While
this is clearly an idealization, it provides a simple test of the
importance of the previous history of the gas.

2.2.2. Chemical Growth Rates

The time evolution of each chemical species at a given
density is provided by K15. From these runs, we can calculate a
growth rate, d[X]/dt as a function of time and density. If our
simulations maintained a constant density, we could use the
absolute time to determine the growth rate and easily evolve the
abundances. However, in a dynamical simulation with non-
linear density evolution, the time dependence is not straightfor-
ward. If we restrict the abundances to grow strictly
monotonically, we can parameterize the chemical growth rate
as a function of the chemical abundance itself and remove the

Figure 3. Comparison between chemical network calculations of K15(solid line) and our approximate chemical model in ATHENA (open diamonds) for Dynamic
Density Evolution (DDE) tests. Each column shows a unique test case, with varying rates of collapse (aff ) and density ratios (n ni f ). The evolution of the density (top
row) is identical in both K15 and ATHENA; therefore no comparison is shown. Results are for OPR0

H2=0.1. Overall, the results agree to within 30%, with the largest
discrepancies at initialization, because the short chemical timescales are difficult to resolve. At late times, there is a small tendency to systematically overestimate
N2H

+, which can lead to an underestimation of
+

Dfrac
N H2 due to our parameterization method.
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time dependence. In the chemical modeling results of K15,
[N2D

+] increases strictly monotonically, and [N2H
+] increases

monotonically except for a slight decrease very near equili-
brium. As the effect is relatively small (30%), we ignore any
decreases in chemical abundances. With this modification, we
can parameterize the growth rate as a function of the current
species abundance.

We calculate the time derivative as a function of chemical
abundance for each of the constant-density runs performed in
K15 using a second-order central difference. For computational
efficiency, we then interpolate the results onto a 10002 nH–[X]

look-up grid. Figure 2 shows an example grid for
OPR0

H2=0.1. For each cell and at each time step in the
simulation, the growth rate is estimated by bilinear interpola-
tion based on the current density and fractional abundance. The
total source term r=S X dt d X dt([ ]) ( [ ] ) is calculated using
a sub-cycled fourth-order Runge–Kutta method and applied to
the scalar field via operator-splitting. Numerical effects of the
scalar field can potentially lead to fractional abundances larger
than the equilibrium value; therefore, for each cell we calculate
the equilibrium value for the current density and prevent the
fractional abundance from exceeding this value.

Figure 4. Projections from our fiducial turbulent, magnetized core model (run S3M2). Time proceeds from left to right in units of the initial mean free-fall time tff .
From top to bottom, the rows are: the mass surface density Σ; the mean velocity along the line of sight weighted by N2D

+; the column density of N2H
+; the column

density of N2D
+; and the deuterium fraction

+
Dfrac

N H2 . The chemical starting time =t t0chem ff and the initial ortho-to-para ratio of H2 OPR0
H2=0.1. Projections are

taken along the x-axis, perpendicular to the initial magnetic field direction. The density-weighted magnetic field projection in the plane of the sky is overlaid on the
mass surface density as black lines, with the length proportional to the field strength. For reference, the length corresponding to B=0.3 mG is shown in the top right.
The chemical tracers are considered only where the number density of molecular hydrogen is greater than = ´n 4 10eff

5 cm−3, roughly 10% of the critical density for
the (3–2) transition. As [N2D

+]=0 at t=0, we instead show the density-weighted mean velocity for that panel only.

6

The Astrophysical Journal, 833:274 (18pp), 2016 December 20 Goodson et al.



2.2.3. Chemistry Tests

We validate our approximate chemical model by comparing
to results from K15. We first compare simulations run with
constant density. Overall, we find our approximate chemistry
matches the full network calculations to within a few per cent.
As these models form the basis for our approximate method, it
is reassuring that we match the evolution of all quantities
accurately. We note that our parameterization leads to a
systematic underestimate of the equilibrium values of [N2H

+]
and

+
Dfrac

N H2 , up to 30% below the values of K15. As discussed
above, we need to make the growth rate a single-valued
function of the current abundance, so we remove the slight
decrease in [N2H

+] near equilibrium.
We next compare to the Dynamic Density Evolution

simulations of K15. In these models, the authors used a
single zone in which the hydrogen number density nH

evolved as

a=
dn

dt

n t

t t
, 16H

ff
H

ff

( )
( )

( )

where tff is the local free-fall time at the current density.
Results are shown in Figure 3. Overall, the results agree to
within 10% for most of the simulations. At early times, the
short chemical timescales are not well resolved. Again, at late
times the inability of [N2H

+] to decrease leads to a systematic
underestimate of [N2H

+] and
+

Dfrac
N H2 .

3. RESULTS

3.1. Dynamical Evolution

We follow the collapse and chemical evolution of the
fiducial simulation (run S3M2) for » t61 kyr 0.8 ff . Figure 4
shows the time evolution of the mass surface density, mean

Figure 5. Same as Figure 4, but now the projection is taken along the z-axis, parallel to the initial field direction.

7

The Astrophysical Journal, 833:274 (18pp), 2016 December 20 Goodson et al.



velocity (weighted by the N2D
+ abundance), and chemical

tracers projected along the x-axis, perpendicular to the initial
magnetic field orientation, as well as the ratio of the column
densities (

+
Dfrac

N H2 ≡N[N2D
+]/N[N2H

+]). For comparison to
observations, we apply a density threshold when calculating the
column densities of N2H

+ and N2D
+ based on the critical

densities for the J=3–2 transition, which are given in Table2
of Miettinen & Offner (2013). For simplicity, we use a single
value for both species of n 3crit ( – » ´ -2 4 10 cm6 3) . How-
ever, emission still occurs at densities below ncrit (Evans 1999),
resulting in an effective critical density roughly an order of
magnitude lower (Shirley 2015); we therefore consider
contributions to the chemical column densities only where

 = ´ -n n 4 10 cmH eff
5 3

2
. The density-weighted plane-of-

sky magnetic field projection is overlaid on the map of mass
surface density.

The initial turbulent velocity field disrupts the smooth
density distribution. The external pressure prevents significant
expansion, and the core begins to collapse due to gravity. As
these are ideal MHD simulations, the magnetic field in the z-
direction prevents significant collapse along the perpendicular
directions due to flux-freezing. Material can freely collapse
along the field lines, creating an elongated filamentary structure
in the x–y plane. We follow the evolution of the core until
runaway gravitational collapse into a few central cells prevents
further evolution; this is essentially the formation of the first
protostar. As seen in Figure 4, the core collapses monolithically
with little fragmentation, and the density appears to be centrally
concentrated at termination. The magnetic field structure
eventually develops an hourglass morphology as the field lines
are pulled inward at the midplane.

The asymmetry introduced by the magnetic field suggests
that the viewing angle will be important. Figure 5 shows
projections taken along the z-axis, parallel to the initial field
orientation. The core now appears circular, suggesting a disk-
like structure in the x–y plane. More small-scale structure is
visible, as the velocity perturbations tangle and amplify the
plane-of-sky magnetic field in the core; however, the central
condensation remains distinct, surrounded by less-dense
filaments or streams.
In the map of mean velocity at =t t0.8 ff in Figure 4, there is

a velocity gradient of several kms−1 across the central
condensation, suggesting rotation in the x–y plane. This is
further evidenced in the velocity “spectra” shown in Figure 6,
which all exhibit a double-peaked distribution. The spectra are
computed from the integrated intensity of N2H

+(3–2) and
N2D

+(3–2) assuming optically thin emission in LTE
( µj n XX [ ]). To examine the effect of different broadening
mechanisms, Figure 6 presents the abundance-weighted
velocity distribution with no broadening (black line), with
thermal broadening at T=15K (red line), and with hyperfine
structure broadening (where each component has the same
Gaussian profile with a thermal velocity dispersion corresp-
onding to T= 15 K; blue line). The thermal velocity dispersion
is sufficiently small (s » 0.06X kms−1) that the broadening
has only a modest effect. The projection direction has a
pronounced effect, as the dispersion in the +z-direction
(parallel to the magnetic field) is much wider than in the
+x-direction. This may be attributed to material collapsing
freely along the magnetic field lines. There are also noticeable
differences between the N2H

+ and N2D
+ spectra: the N2D

+

spectra exhibit more small-scale structures than the N2H
+. As

will be discussed in Section 3.2, N2H
+ largely reaches

Figure 6. “Spectra” of the total emission from N2H
+(3–2) (top row) and N2D

+(3–2) (bottom row) in run S3M2 at the end of the simulation, for line-of-sight velocities
parallel (left column) and perpendicular (right column) to the magnetic field. The velocity binsize is 0.1kms−1. Assuming the gas is optically thin, we weight the
velocities with the abundance of the tracer species. The black line shows the unprocessed distribution; the red line shows the effect of thermal broadening at T=15K;
and the blue line includes both thermal and hyperfine structure (HFS) broadening. For reference, the normalized HFS intensities are shown in black at the bottom of
each panel.
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equilibrium throughout the core, whereas N2D
+ does not;

N2D
+ may therefore probe smaller and denser structures within

the core.
T13 assessed the virial state of observed pre-stellar cores by

comparing the velocity dispersion of N2D
+(3–2), s +N D2 , to the

predictions for a virialized core based on MT03, sc,vir
(Equation (15)). We present a similar analysis in Figure 7. At
each time step, we calculate the projected area in which
N2D

+(3–2) emission is present, then ascribe a circle of
equivalent area to determine the effective core radius Rc,eff .
The mass surface density of the clump Scl is then determined
within the annulus from Rc to R2 c. To match the observations
of T13, the effective core mass is determined from the
projections in two ways: (1) the total mass surface density Σ is
summed within the equivalent area to compute the maximum

core mass M ;c,max (2) the surface density of the clump is
subtracted from the total mass surface density before summing
to compute the minimum core mass M ,c,min removing
contributions from the foreground and background to the core
mass. The velocity dispersion of N2D

+(3–2) is determined by
fitting a Gaussian to the thermally broadened spectrum
computed along each Cartesian projection direction. For
comparison, we also show the velocity dispersion calculated
from the core color tracer (sc), which should represent the
actual velocity dispersion of the core. Finally, the mass surface
density of the clump and the minimum core mass are used to
estimate the velocity dispersion of a virialized core, sc,vir
(Equation (15)), compared to s +N D2 and sc.
In the fiducial run, the effective radius decreases as the core

collapses. The effective core mass also decreases due to the

Figure 7. Time evolution of quantities observed by T13in runs S3M2 (left column) and S3M1 (right column). The rows show, from top to bottom: the effective core
radius R ;c,eff the core mass determined both with the clump contribution (M ;c,max black) and without (M ;c,min blue); the one-dimensional velocity dispersion of
N2D

+(3–2) (s +;N D2 black) and the color field to trace the core (s ;c red); and the ratio of σ to the mass-averaged velocity dispersion of a virialized core sc,vir, computed
from Equation (15) using the minimum core mass (using Mc,max instead results in a 5% increase in sc,vir). σ is determined from the total thermally broadened spectra
projected along the three Cartesian lines of sight (solid: x-direction; dashed: y-direction; dashed–dotted: z-direction). For reference, s s = 1c,vir is indicated with a
dotted horizonatal line. As [N2D

+]=0 at t=0, we show instead the total velocity dispersion for this data point only.
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central concentration of the N2D
+ tracer. The core is initialized

with a velocity dispersion s = -1 km s ;1 yet by =t t0.1 ff ,
s » -0.4 km s 1. The velocity dispersion then increases most
strongly in the z-direction, as material collapses freely along the
magnetic field lines. As N2D

+ becomes concentrated in the
densest regions of the core, it no longer traces the overall
velocity distribution and diverges from the estimate using the
color field. The cores analyzed in both T13 and Kong et al.
(2016a) were determined to be moderately sub-virial, with
s s ~+ 0.8N D c,vir2

(based on the estimate of core mass from the
millimeter continuum, which is expected to already include
subtraction of the mass surface density of the clump via
interferometric spatial filtering and thus be consistent with
using Mc,min ). However, for the case of the massive core C1-S,

Figure 8. Time evolution of the mean (solid lines) and maximum (dashed
lines) values of mass surface density Σ, N2H

+ column density, N2D
+ column

density, and deuterium fraction
+

Dfrac
N H2 in the fiducial core (run S3M2). For

N2D
+ and

+
Dfrac

N H2 , results are presented for different initial ortho-to-para ratios
of H2 (blue: OPR0

H2 = 1.0; black: OPR0
H2 = 0.1; red: OPR0

H2 = 0.01). Time is
given in units of the initial core-averaged free-fall time tff (top x-axis) as well in
absolute time (bottom x-axis). The lower the initial OPRH2, the faster the
deuteration proceeds. By the end of the simulation, the only estimate for mean

+
Dfrac

N H2 that is similar to observations (0.1) is for OPR0
H2=0.01.

Figure 9. Probability distribution functions in our fiducial simulation (run
S3M2) at multiple times. From top to bottom, the panels show the mass surface
density Σ, the N2H

+ column density, the N2D
+ column density, and the

deuterium fraction
+

Dfrac
N H2 . Simulation times are indicated by color (blue:

t=0.2t ;ff red: 0.4t ;ff yellow: 0.6t ;ff green: 0.8tff ). Projections are taken
along the x-axis for =t 0chem and OPR0

H2=0.1.

Figure 10. Radial averages of
+

Dfrac
N H2 in our fiducial simulation (run S3M2) for

=t 0chem and OPR0
H2=0.1. Results are shown for different times (blue:

0.2 t ;ff red: 0.4t ;ff yellow: 0.6t ;ff green: 0.8tff ) and projection directions
(solid: x-axis; dashed: y-axis; dashed–dotted: z-axis).
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T13 found s s+  0.45N D c,vir2
and argued that this may imply

the presence of strong (∼1 mG), large-scale magnetic fields.
Here, we observe that after the initial turbulent energy
injection, the fiducial core (run S3M2) appears moderately
sub-virial but later becomes super-virial as the core collapses.
The simulation with a stronger magnetic field (run S3M1),
which is discussed in more detail in Section 3.6, shows an even
more sub-virial velocity dispersion when viewed in the x- and
y-directions, consistent with the estimate of T13for C1-S.

The evolution of the fiducial run is further quantified in
Figure 8, which shows the evolution of both the mean and
maximum values of the mass surface density, chemical
abundances, and

+
Dfrac

N H2 in the core. Here we define the core
using the effective number density threshold n ;eff as this selects
a unique volume, the mean column density is independent of
viewing angle. Maximum values are computed from the x-axis
projections. The mean mass surface density of the core
decreases initially due to the initial turbulence and then
increases slowly with time, from S » 0.4 g cm−2 up to
0.8 g cm−2. The maximum value increases by nearly two
orders of magnitude between 0.5 and 0.7 tff , as the central
overdensity contracts rapidly. The chemical evolution is
discussed in Section 3.2.

The same density threshold is applied to the probability
distribution functions of the column density presented in
Figure 9. As the core collapses, the initially (roughly)

lognormal distribution of mass surface density develops a
high-density power-law tail, indicative of collapse. At the end
of the simulation, roughly 10% of the core mass is
at S 1.0 g cm−2.

3.2. Chemical Evolution

As the density increases due to gravitational collapse, the
growth rates of the chemical species also increase. We observe
in Figures 4 and 5 that N2H

+ reaches equilibrium before N2D
+

and is more widespread. This agrees well with observations of
pre-stellar core regions; K16 find an extended envelope of
N2H

+ emission around cores in IRDC G028.37+00.07, while
N2D

+ is more concentrated. The asymmetry introduced by the
magnetic field also affects the chemical morphology; when
viewing perpendicular to the field, the chemical tracers are
more centrally concentrated. The chemical evolution is also
quantified in Figure 8. The mean N2H

+ column density
increases rapidly and then flattens over time as equilibrium is
reached; in contrast, the mean N2D

+ column density grows
steadily throughout the simulation without reaching equili-
brium, and

+
Dfrac

N H2 increases only modestly until late times (after
N2H

+ has reached equilibrium). The maximum values of N2D
+

and
+

Dfrac
N H2 do reach equilibrium values, but this is limited to

only the densest regions of the core. This is confirmed in
Figure 9, which shows that only a small fraction of cells in the

Figure 11. Ratio of chemical column densities (
+

Dfrac
N H2 ) at the end of the simulation ( =t t0.8 ff ) from our fiducial model (run S3M2) for different initial chemical ages

and ortho-to-para ratios of H2. From left to right, the columns are at tchem=0, 1, 3, and 10 t ;ff from top to bottom, the rows are OPR0
H2=1.00, 0.10, and 0.01. As

either tchem or OPR0
H2 is increased, the resulting mean deuterium fraction in the core increases.
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core are able to reach
+

Dfrac
N H2  0.1 by the end of the simulation.

As K16 detected widespread deuteration in pre-stellar cores
(see also the study of Barnes et al. (2016) for evidence of
widespread deuteration on parsec-sized, lower-density scales in
an IRDC), this suggests that more time is needed for the outer
regions of the core to reach observed values.

Figure 10 presents radial averages of
+

Dfrac
N H2 within the core

at different times and projection directions.
+

Dfrac
N H2 grows

rapidly in the center of the core, where the density is highest,
while in the outer regions,

+
Dfrac

N H2 remains relatively unchanged
for the duration of the simulation. The direction of projection
does not significantly affect the radial profile, which suggests
that observed radial profiles could be a useful (viewing-angle-
independent) means to constrain the age of the core. Radial
mapping of

+
Dfrac

N H2 within observed cores is now technically
feasible with ALMA.

3.3. Effect of Initial OPRH2

Pagani et al. (2013) and K15 found that the initial ortho-to-
para ratio of H2 (OPR0

H2) strongly affected the chemical
evolution of N2D

+ and
+

Dfrac
N H2 . Our fiducial simulation has

OPR0
H2=0.1. As the hydrodynamics is unaffected by the

chemistry, we simultaneously evolve the molecular species
using OPR0

H2=0.01 and OPR0
H2=1.0. The evolution of the

mean values of N2D
+ and

+
Dfrac

N H2 at different OPR0
H2 is shown

in Figure 8. As noted by K15, a lower OPR0
H2 leads to faster

growth of N2D
+, as well as a larger equilibrium value of

[N2D
+]. Since N2H

+ is unchanged by OPR0
H2,

+
Dfrac

N H2 also
grows faster and reaches a higher value. The mean value of

+
Dfrac

N H2 remains below the observed values (0.1) even at the
lowest OPR0

H2 (= 0.01), indicating that a longer core lifetime
and/or earlier deuteration (see Section 3.4) is necessary. The

Figure 12. Similar to Figure 4 but for a core with lower initial mass surface density (S = 0.1cl g cm−2; run S1M2). Projections are taken along the x-axis
(perpendicular to initial magnetic field direction). The simulation runs to the same relative time ( t0.8 ff ), which corresponds to a longer absolute time (139 kyr).
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effect of varying OPR0
H2 is also presented in Figure 11, which

shows the ratio of chemical column densities (i.e.,
+

Dfrac
N H2 ) at the

end of the fiducial simulation for varying OPR0
H2. From the top

row moving down, OPR0
H2 decreases for a given chemical age,

with a corresponding increase in the mean deuterium fraction in
the core.

3.4. Effect of Initial Chemical Age

We have thus far assumed in our calculations that the gas
begins in an initially pristine condition, with =t 0chem , i.e.,
[N2H

+]=[N2D
+]=0.0 at t=0. However, this may not be

the case, especially given our initial condition; we initialize the
core after it has already formed a centrally concentrated
structure. Deuteration begins once CO begins to freeze out,
which occurred at some unknown time prior to the current
state. We therefore explore different “chemical ages” for the

core: tchem=0, 1, 3, and 10tff . To set the initial condition for
the chemical abundances, we reference the constant-density
results of K15 at an absolute time, as described in Section 2.2.
The core then begins from an advanced state of deuteration,
assuming that it has been in its current density configuration for
tchem. While the dynamical collapse is unchanged, the core is
able to reach higher deuterium fractions. As is evident in
Figure 11, the deuterium fraction increases for increasing
chemical age, with nearly the entire core achieving the
equilibrium value of

+
Dfrac

N H2 for =t t10chem ff . While this may
seem to agree with the estimates of K15, which indicated up to
10 free-fall times may be necessary to reach observed values of

+
Dfrac

N H2 , the simulations are not directly comparable. In K15, the
density increases continually, with a corresponding decrease in
t ;ff here, we assume a constant density (hence a constant tff)
prior to initialization. Nevertheless, in both cases the conclu-
sion remains that deuteration must proceed for longer than the

Figure 13. Same simulation as in Figure 12 (run S1M2) but now the projections are taken along the z-axis, parallel to the initial magnetic field direction.
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average free-fall time, either by earlier deuteration or by slower
collapse.

3.5. Effect of Initial Mass Surface Density

We also examine the effect of varying the initial mass
surface density of the clump Scl. Our fiducial simulation uses
S = 0.3cl g cm−2; however, this is the current observed state of
the cores in the T13 sample. As the cores currently show
significant deuteration, we investigate an earlier phase of the
core lifetime by decreasing the initial mass surface density of
the clump to S = 0.1cl g cm−2 (run S1M2). We keep the core
mass fixed at M60 and use the prescription of MT03 to adjust
the core radius (increase R 0.18c pc) and surface number
density (decrease  ´n 8.2 10sH,

4 cm−3). The average core
free-fall time then increases to t 173ff kyr. We maintain the
core temperature at =T 15c K and the initial virial parameter
a = 2; the initial velocity dispersion then decreases to
s  0.76 kms−1. We also maintain the same mass-to-flux
ratio m =F 2; the central field strength is then reduced to

B 0.27c mG.

Figure 14. Summary of mean chemical column densities in the core for all runs
at the end of the simulation, for varying initial chemical age (indicated by
color) and ortho-to-para ratio of H2 (indicated by symbol). Reference lines for

+
Dfrac

N H2 are indicated with dashed lines. The N2H
+ column density is largely

constant across the parameter space of each run because (1) N2H
+ is largely

unaffected by changes in OPRH2, and (2) equilibrium is reached for all values
of tchem. Values of

+
Dfrac

N H2  0.1 are only reached for low values of OPR0
H2 or

large chemical age.

Figure 15. Similar to Figure 4 but for a core with a stronger magnetic field (m =F 1; run S3M1). Projections are taken along the x-axis, perpendicular to the initial
magnetic field direction. The critical magnetic field inhibits the collapse, allowing the simulation to proceed another t0.2 ff . Due to flux-freezing, material collapses
most freely parallel to the magnetic field; hence the core becomes compressed in the z-direction.
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Figures 12 and 13 show the evolution of run S1M2 for
projections along the x- and z-axes, respectively. Based on the
results of K15 presented in Figure 1, we expect the lower
densities in the core to lead to slower chemical growth and
lower equilibrium values of

+
Dfrac

N H2 . The core collapses more
slowly on an absolute timescale, but the simulation terminates
at the same relative time, =t t0.8 ff . Comparing on a relative
timescale, there are only modest differences in morphology and
chemistry between the two cases. At termination, run S1M2
appears more filamentary and less centrally concentrated than
run S3M2. Although the absolute values of column density are
lower, the mean

+
Dfrac

N H2 is actually higher. This is displayed in
Figure 14, which shows the final mean chemical column
densities and corresponding

+
Dfrac

N H2 for all simulations
performed. Depending on the values of tchem and OPR0

H2,
+

Dfrac
N H2 is higher by a factor of 1–5 in run S1M2 than in run

S3M2. We therefore conclude that the initial mass surface
density does not strongly affect the chemical evolution.

3.6. Effect of Magnetic Field Strength

We also test the effect of increasing the magnetic field
strength. We perform simulations with a critical field strength
(m =F 1.0) for both the fiducial mass surface density

(S = 0.3cl g cm−2; run S3M1) and the decreased value
(S = 0.1cl g cm−2; run S1M1). Projections are shown for run
S3M1 in Figures 15 and 16, and for run S1M1 in Figures 17
and 18. In both instances, the stronger magnetic field leads to
an initial expansion of the core before it coalesces again and
collapses. The critical field does slow the contraction—both
simulations run t0.2 ff past the corresponding simulations with
m =F 2.0—but ultimately does not prevent collapse. The
slower collapse leads to a larger, more diffuse core than the
fiducial run at a given time. The stronger field also inhibits
motions perpendicular to the field, as illustrated in Figure 7.
The velocity dispersions in the x- and y-directions are lower in
run S3M1 than in run S3M2, while the z-direction is largely
unaffected. The filamentary structure observed perpendicular to
the field is also narrower, which reduces estimates of the mass.
Figure 14 reveals that the longer timescale at m =F 1.0 does

result in a higher mean value of
+

Dfrac
N H2 in both cases, but only

by a factor of 1–2 over runs with m =F 2.0. As with the mass
surface density, we conclude that the magnetic field strength
does not strongly affect the resulting deuterium fraction.
However, we caution that this result may be influenced by the
initial field geometry (see Section 4), and further investigation
is warranted.

Figure 16. Same simulation as Figure 15 (run S3M1) but now the projections are taken along the z-axis, parallel to the initial magnetic field direction.
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4. DISCUSSION

Figure 14 summarizes the final mean chemical column
densities (and

+
Dfrac

N H2 ) for all simulations performed and across
the entire parameter space. In agreement with the one-zone
models of K15, we find that deuteration proceeds slowly during
collapse and only reaches observed values under certain
conditions, namely low OPR0

H2 (0.01) or advanced chemical
evolution ( t t3chem ff). The initial mass surface density and
magnetic field strength do not alter this conclusion
significantly.

Our approximate chemistry model for N2H
+ deuteration is

constructed from the results of K15. The chemical network
calculations of K15were performed with the same physical
conditions (e.g., temperature, ionization rate, dust-to-gas ratio)
except for the density and OPR0

H2. As noted in Section 2.2,
these two quantities play a large role in determining the
deuteration and are therefore parameters of our model.
However, varying any of the other model parameters
of K15could shift the equilibrium value of

+
Dfrac

N H2 by an order
of magnitude, as is evident in Figure 5 of K15. In particular,
increasing the initial heavy-element depletion factor fD
decreases the timescale for deuteration. This may explain the
discrepancy between our work and the results of Pagani et al.

(2013): we set =f 10D and obtain results consistent with slow
collapse, whereas Pagani et al. (2013) chose f 300D and
determined that a fast collapse best matched observations of

+
Dfrac

N H2 . While there is evidence for some CO depletion
( f 5D ) in IRDCs (Hernandez et al. 2011, 2012), further
observations are necessary to better constrain this parameter.
Figure 5 of K15 also demonstrates the effect of changing the
cosmic-ray ionization rate ζ; increasing ζ will both decrease the
equilibrium value of

+
Dfrac

N H2 and increase its growth rate
+

Dfrac
N H2 .

We also note that the fiducial parameter values of K15may not
be applicable across the full range of densities
(   -n10 10 cm3

H
9 3). Short of implementing the full net-

work in 3D MHD simulations, future work could introduce
density-dependent parameters to better span the parameter
space of K15. Finally, our parameterization introduces a
systematic overestimate of N2H

+ and an underestimate of
+

Dfrac
N H2 , by up to 30% relative error. While the approximation is

expedient for simulations, a time-dependent chemical network
will be required to obtain more accurate species evolution as
the density evolves.
The cores begin with a smooth density profile, and we rely

on the initial super-virial turbulent velocity field to create
density fluctuations. The turbulence is thus not fully developed

Figure 17. Similar to Figure 12 but for a core with increased magnetic field strength (S = 0.1cl , m =F 1; run S1M1). Projections are taken along the x-axis
(perpendicular to the initial magnetic field direction). As in Figure 15, the stronger field again slows the collapse and leads to an elongated core.
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at initialization, and the energy decays rapidly as seen in
Figure 7. Ideally, the density and velocity structure would be
generated in a self-consistent manner, possibly through driven
turbulence with subsequent application of gravity (e.g., Heitsch
et al. 2001; Myers et al. 2014).

We consider magnetic fields but neglect non-ideal MHD
effects, such as ambipolar diffusion (AD). The AD timescale is
estimated in Figure 6 of K15 to be roughly an order of
magnitude longer than the free-fall timescale for all relevant
densities (see also Heitsch & Hartmann 2014). As all our
simulations terminate prior to =t t2 ff , we do not expect AD to
significantly affect the dynamics. However, the field geometry
may affect the results. We begin with a smooth, cylindrically
symmetric field in the z-direction. As with the density field, the
magnetic field is tangled by turbulent motions, but only after
initialization. Material freely collapses along the field lines
even when the field is of critical strength. Future studies either
should begin with a tangled component in addition to an
ordered component or should generate a tangled field through
turbulent driving (Myers et al. 2014).

We are limited in the range of spatial scales we can probe
due to the lack of mesh refinement. Our fiducial simulation is
performed using a fixed grid of 5123 grid cells, for a minimum
resolution of d » 360 au. Following the collapse and chemical

evolution further will require additional resolution, possibly
through the use of mesh refinement.
We also halt our calculations when the collapsing core is no

longer adequately resolved, i.e., at protostar formation. We do
not include sink particles, because we are only interested in
pre-stellar conditions. For similar reasons, we also neglect
radiative feedback. As demonstrated by Commerçon et al.
(2011) and Myers et al. (2013), including radiation feedback
from protostars slows the collapse and inhibits fragmentation. It
is unclear how the protostellar radiation field will affect the
deuteration process; however, there is recent evidence that
protostars can exist within highly deuterated regions (Tan
et al. 2016). Radiation effects could increase the core lifetime
and hence the deuterium fraction, and future studies following
the chemistry for longer periods should include these effects
using sink particles and radiation-magnetohydrodynamics.

5. CONCLUSIONS

We have constructed an approximate chemical model for the
deuteration of N2H

+ in cold, dense pre-stellar gas. Our model
is based on the results of the astrochemical network presented
in K15. The full network is prohibitively expensive in multi-
dimensional hydrodynamics simulations. Rather than reducing
the number of reactions, we parameterize the results across a

Figure 18. Same simulation as Figure 17 (run S1M1) but for projections taken along the z-axis, parallel to the initial magnetic field direction.
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range of densities into look-up tables. This approximate
formulation is demonstrated to perform reasonably well in
comparison to full network calculations with both constant and
evolving density.

We implement our approximate chemical model in the
ATHENA MHD code. In 3D simulations, we follow deuteration
during the collapse of a turbulent, magnetized pre-stellar core.
The core is initialized in accordance with the Turbulent Core
Accretion model of MT03. For our adopted initial conditions,
the core collapses to the point of forming a protostar within
roughly one free-fall time, regardless of the initial mass surface
density or magnetic field strength. During most of this collapse
phase the velocity dispersion of the core as traced by
N2D

+(3–2) appears moderately sub-virial compared to predic-
tions of the Turbulent Core Model of MT03, consistent with
observations of T13 and Kong et al. (2016a). Only near the
end, just before protostar formation, does the velocity
dispersion rise to appear super-virial.

As the core collapses, the increase in density accelerates the
deuteration of N2H

+. However, we find that
+

Dfrac
N H2 does not

reach observed values (0.1) in ~ t1 ff , unless the initial ortho-
to-para ratio of H2 (OPR0

H2) is0.01 or the core begins from an
advanced chemical state ( t t3chem ff). This is in agreement
with K15 and suggests that the collapse rate in highly
deuterated cores may be significantly slower than the free-fall
time, or that the deuteration process begins earlier than
assumed.
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