83 research outputs found

    Techniques for Generating Centimetric Drops in Microgravity and Application to Cavitation Studies

    Get PDF
    This paper describes the techniques and physical parameters used to produce stable centimetric water drops in microgravity, and to study single cavitation bubbles inside such drops (Parabolic Flight Campaigns, European Space Agency ESA). While the main scientific results have been presented in a previous paper, we shall herein provide the necessary technical background, with potential applications to other experiments. First, we present an original method to produce and capture large stable drops in microgravity. This technique succeeded in generating quasi-spherical water drops with volumes up to 8 ml, despite the residual g-jitter. We find that the equilibrium of the drops is essentially dictated by the ratio between the drop volume and the contact surface used to capture the drop, and formulate a simple stability criterion. In a second part, we present a setup for creating and studying single cavitation bubbles inside those drops. In addition, we analyze the influence of the bubble size and position on the drop behaviour after collapse, i.e. jets and surface perturbations

    Scaling laws for jets of single cavitation bubbles

    Get PDF
    Fast liquid jets, called micro-jets, are produced within cavitation bubbles experiencing an aspherical collapse. Here we review micro-jets of different origins, scales and appearances, and propose a unified framework to describe their dynamics by using an anisotropy parameter ζ\zeta, representing a dimensionless measure of the liquid momentum at the collapse point (Kelvin impulse). This parameter is rigorously defined for various jet drivers, including gravity and nearby boundaries. Combining theoretical considerations with hundreds of high-speed visualisations of bubbles collapsing near a rigid surface, near a free surface or in variable gravity, we classify the jets into three distinct regimes: weak, intermediate and strong. Weak jets (ζ<103\zeta<10^{-3}) hardly pierce the bubble, but remain within it throughout the collapse and rebound. Intermediate jets (103<ζ<0.110^{-3}<\zeta<0.1) pierce the opposite bubble wall close to the last collapse phase and clearly emerge during the rebound. Strong jets (ζ>0.1\zeta>0.1) pierce the bubble early during the collapse. The dynamics of the jets is analysed through key observables, such as the jet impact time, jet speed, bubble displacement, bubble volume at jet impact and vapour-jet volume. We find that, upon normalising these observables to dimensionless jet parameters, they all reduce to straightforward functions of ζ\zeta, which we can reproduce numerically using potential flow theory. An interesting consequence of this result is that a measurement of a single observable, such as the bubble displacement, suffices to estimate any other parameter, such as the jet speed. Remarkably, the dimensionless parameters of intermediate and weak jets only depend on ζ\zeta, not on the jet driver. In the same regime, the jet parameters are found to be well approximated by power-laws of ζ\zeta, which we explain through analytical arguments

    Shock waves from non-spherical cavitation bubbles

    Get PDF
    We present detailed observations of the shock waves emitted at the collapse of single cavitation bubbles using simultaneous time-resolved shadowgraphy and hydrophone pressure measurements. The geometry of the bubbles is systematically varied from spherical to very non-spherical by decreasing their distance to a free or rigid surface or by modulating the gravity-induced pressure gradient aboard parabolic flights. The non-spherical collapse produces multiple shocks that are clearly associated with different processes, such as the jet impact and the individual collapses of the distinct bubble segments. For bubbles collapsing near a free surface, the energy and timing of each shock are measured separately as a function of the anisotropy parameter ζ\zeta, which represents the dimensionless equivalent of the Kelvin impulse. For a given source of bubble deformation (free surface, rigid surface or gravity), the normalized shock energy depends only on ζ\zeta, irrespective of the bubble radius R0R_{0} and driving pressure Δp\Delta p. Based on this finding, we develop a predictive framework for the peak pressure and energy of shock waves from non-spherical bubble collapses. Combining statistical analysis of the experimental data with theoretical derivations, we find that the shock peak pressures can be estimated as jet impact-induced hammer pressures, expressed as ph=0.45(ρc2Δp)1/2ζ1p_{h} = 0.45\left(\rho c^{2}\Delta p\right)^{1/2} \zeta^{-1} at ζ>103\zeta > 10^{-3}. The same approach is found to explain the shock energy quenching as a function of ζ2/3\zeta^{-2/3}.Comment: Accepted for publication in Physical Review Fluid

    The Quest for the Most Spherical Bubble

    Get PDF
    We describe a recently realized experiment producing the most spherical cavitation bubbles today. The bubbles grow inside a liquid from a point-plasma generated by a nanosecond laser pulse. Unlike in previous studies, the laser is focussed by a parabolic mirror, resulting in a plasma of unprecedented symmetry. The ensuing bubbles are sufficiently spherical that the hydrostatic pressure gradient caused by gravity becomes the dominant source of asymmetry in the collapse and rebound of the cavitation bubbles. To avoid this natural source of asymmetry, the whole experiment is therefore performed in microgravity conditions (ESA, 53rd and 56th parabolic flight campaign). Cavitation bubbles were observed in microgravity (~0g), where their collapse and rebound remain spherical, and in normal gravity (1g) to hyper-gravity (1.8g), where a gravity-driven jet appears. Here, we describe the experimental setup and technical results, and overview the science data. A selection of high-quality shadowgraphy movies and time-resolved pressure data is published online.Comment: 18 pages, 14 figures, 1 tabl

    Energy partition at the collapse of spherical cavitation bubbles

    Get PDF
    Spherically collapsing cavitation bubbles produce a shock wave followed by a rebound bubble. Here we present a systematic investigation of the energy partition between the rebound and the shock. Highly spherical cavitation bubbles are produced in microgravity, which suppress the buoyant pressure gradient that otherwise deteriorates the sphericity of the bubbles. We measure the radius of the rebound bubble and estimate the shock energy as a function of the initial bubble radius (2-5.6 mm) and the liquid pressure (10-80 kPa). Those measurements uncover a systematic pressure dependence of the energy partition between rebound and shock. We demonstrate that these observations agree with a physical model relying on a first-order approximation of the liquid compressibility and an adiabatic treatment of the non-condensable gas inside the bubble. Using this model we find that the energy partition between rebound and shock is dictated by a single non-dimensional parameter ξ=Δpγ6/[pg01/γ(ρc2)11/γ]\xi = \Delta p\gamma^6/[{p_{g0}}^{1/\gamma} (\rho c^2)^{1-1/\gamma}], where Δp=ppv\Delta p=p_\infty-p_v is the driving pressure, pp_{\infty} is the static pressure in the liquid, pvp_v is the vapor pressure, pg0p_{g0} is the pressure of the non-condensable gas at the maximal bubble radius, γ\gamma is the adiabatic index of the non-condensable gas, ρ\rho is the liquid density, and cc is the speed of sound in the liquid.Comment: 7 pages, 7 figure

    Techniques for generating centimetric drops in microgravity and application to cavitation studies

    Get PDF
    This paper describes the techniques and physical parameters used to produce stable centimetric water drops in microgravity, and to study single cavitation bubbles inside such drops (Parabolic Flight Campaigns, European Space Agency ESA). While the main scientific results have been presented in a previous paper, we shall herein provide the necessary technical background, with potential applications to other experiments. First, we present an original method to produce and capture large stable drops in microgravity. This technique succeeded in generating quasi-spherical water drops with volumes up to 8ml, despite the residual g-jitter. We find that the equilibrium of the drops is essentially dictated by the ratio between the drop volume and the contact surface used to capture the drop, and formulate a simple stability criterion. In a second part, we present a setup for creating and studying single cavitation bubbles inside those drops. In addition, we analyze the influence of the bubble size and position on the drop behaviour after collapse, i.e., jets and surface perturbation

    Confined Shocks inside Isolated Liquid Volumes -- A New Path of Erosion?

    Full text link
    The unique confinement of shock waves inside isolated liquid volumes amplifies the density of shock-liquid interactions. We investigate this universal principle through an interdisciplinary study of shock-induced cavitation inside liquid volumes, isolated in 2 and 3 dimensions. By combining high-speed visualizations of ideal water drops realized in microgravity with smoothed particle simulations we evidence strong shock-induced cavitation at the focus of the confined shocks. We extend this analysis to ground-observations of jets and drops using an analytic model, and argue that cavitation caused by trapped shocks offers a distinct mechanism of erosion in high-speed impacts (>100 m/s).Comment: 4 page letter, 4 figure

    Detailed Jet Dynamics in a Collapsing Bubble

    Get PDF
    We present detailed visualizations of the micro-jet forming inside an aspherically collapsing cavitation bubble near a free surface. The high-quality visualizations of large and strongly deformed bubbles disclose so far unseen features of the dynamics inside the bubble, such as a mushroom-like flattened jet-tip, crown formation and micro-droplets. We also find that jetting near a free surface reduces the collapse time relative to the Rayleigh time
    corecore