46 research outputs found

    The role of population PK-PD modelling in paediatric clinical research

    Get PDF
    Children differ from adults in their response to drugs. While this may be the result of changes in dose exposure (pharmacokinetics [PK]) and/or exposure response (pharmacodynamics [PD]) relationships, the magnitude of these changes may not be solely reflected by differences in body weight. As a consequence, dosing recommendations empirically derived from adults dosing regimens using linear extrapolations based on body weight, can result in therapeutic failure, occurrence of adverse effect or even fatalities. In order to define rational, patient-tailored dosing schemes, population PK-PD studies in children are needed. For the analysis of the data, population modelling using non-linear mixed effect modelling is the preferred tool since this approach allows for the analysis of sparse and unbalanced datasets. Additionally, it permits the exploration of the influence of different covariates such as body weight and age to explain the variability in drug response. Finally, using this approach, these PK-PD studies can be designed in the most efficient manner in order to obtain the maximum information on the PK-PD parameters with the highest precision. Once a population PK-PD model is developed, internal and external validations should be performed. If the model performs well in these validation procedures, model simulations can be used to define a dosing regimen, which in turn needs to be tested and challenged in a prospective clinical trial. This methodology will improve the efficacy/safety balance of dosing guidelines, which will be of benefit to the individual child

    Systematic Evaluation of the Descriptive and Predictive Performance of Paediatric Morphine Population Models

    Get PDF
    Purpose: A framework for the evaluation of paediatric population models is proposed and applied to two different paediatric population pharmacokinetic models for morphine. One covariate model was based on a systematic covariate analysis, the other on fixed allometric scaling principles. Methods: The six evaluation criteria in the framework were 1) number of parameters and condition number, 2) numerical diagnostics, 3) prediction-based diagnostics, 4) η-shrinkage, 5) simulation-based diagnostics, 6) diagnostics of individual and population parameter estimates versus covariates, including measurements of bias and precision of the population values compared to the observed individual values. The framework entails both an internal and external model evaluation procedure. Results: The application of the framework to the two models resulted in the detection of overparameterization and misleading diagnostics based on individual predictions caused by high shrinkage. The diagnostic of individual and population parameter estimates versus covariates proved to be highly informative in assessing obtained covariate relationships. Based on the framework, the systematic covariate model proved to be superior over the fixed allometric model in terms of predictive performance. Conclusions: The proposed framework is suitable for the evaluation of paediatric (covariate) models and should be applied to corroborate the descriptive and predictive properties of these models

    Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.

    Get PDF
    Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies

    Clusters of alcohol abstainers and drinkers incorporating motives against drinking: a random survey of 18 to 34 year olds in four cities in four different continents

    Get PDF
    Objective: The aim of this analysis was to identify alcohol consumption clusters for adolescents and early adults according to attitudes to drinking, motivations against drinking and perceptions associated with alcohol. Method: Interviews were undertaken with people aged 18–34 years old living in four cities in different regions of the world. Multistage random sampling was consistent across the four cities (Ilorin (Nigeria), Wuhan (China), Montevideo (Uruguay) and Moscow (Russia)). The questionnaire was forward and back translated into relevant languages and face-to-face interviewing undertaken. The data were weighted to the population of each city. In total 6235 structured interviews were undertaken (1391 in Ilorin, 1600 in Montevideo, 1604 in Moscow and 1640 in Wuhan). Questions regarding motivation against alcohol consumption (14 items), assessing perceptions (3 items) and attitudes to drinking in certain situations (8 items) were asked of all respondents including abstainers. Factor analysis was initially undertaken to identify highly related correlated variables. Results: Cluster analysis provided a variety of clusters (Ilorin (3 clusters), Montevideo (5), Moscow (4) and Wuhan (4)). At least one cluster in each city was dominated by abstainers and another by heavy episodic drinkers. Variations by city and alcohol consumption patterns existed in regards to variables included. Conclusion: This analysis detailed the city specific motivations against drinking alcohol, and the attitudes towards alcohol consumption. Differences highlight the influence of country/city specific culture, customs, laws, societal norms and traditions

    Children Everywhere Deserve Evidence-Based and Accessible Treatment

    No full text

    Inter-individual variability in propofol pharmacokinetics in preterm and term neonates

    No full text
    BACKGROUND: To document covariates which contribute to inter-individual variability in propofol pharmacokinetics in preterm and term neonates. METHODS: Population pharmacokinetics were estimated (non-linear mixed effect modelling) based on the arterial blood samples collected in (pre)term neonates after i.v. bolus administration of propofol (3 mg kg(-1), 10 s). Covariate analysis included postmenstrual age (PMA), postnatal age (PNA), gestational age, weight, and serum creatinine. RESULTS: Two hundred and thirty-five arterial concentration-time points were collected in 25 neonates. Median weight was 2930 (range 680-4030) g, PMA 38 (27-43) weeks, and PNA 8 (1-25) days. In a three-compartment model, PMA was the most predictive covariate for clearance (P/=10 days further improved the model (P/=10 days. Values for central volume (1.32 litre), peripheral volume 1 (15.4 litre), and peripheral volume 2 (1.29 litre) were not significantly influenced by any of the covariates (P>0.001). CONCLUSIONS: PMA and PNA contribute to the inter-individual variability of propofol clearance with very fast maturation of clearance in neonatal life. This implicates that preterm neonates and neonates in the first week of postnatal life are at an increased risk for accumulation during either intermittent bolus or continuous administration of propofol.status: publishe
    corecore