140 research outputs found

    Analysis of mortality metrics associated with a comprehensive range of disorders in Denmark, 2000 to 2018: A population-based cohort study

    Get PDF
    Background: The provision of different types of mortality metrics (e.g., mortality rate ratios [MRRs] and life expectancy) allows the research community to access a more informative set of health metrics. The aim of this study was to provide a panel of mortality metrics associated with a comprehensive range of disorders and to design a web page to visualize all results. Methods and findings: In a population-based cohort of all 7,378,598 persons living in Denmark at some point between 2000 and 2018, we identified individuals diagnosed at hospitals with 1,803 specific categories of disorders through the International Classification of Diseases-10th Revision (ICD-10) in the National Patient Register. Information on date and cause of death was obtained from the Registry of Causes of Death. For each of the disorders, a panel of epidemiological and mortality metrics was estimated, including incidence rates, age-of-onset distributions, MRRs, and differences in life expectancy (estimated as life years lost [LYLs]). Additionally, we examined models that adjusted for measures of air pollution to explore potential associations with MRRs. We focus on 39 general medical conditions to simplify the presentation of results, which cover 10 broad categories: circulatory, endocrine, pulmonary, gastrointestinal, urogenital, musculoskeletal, hematologic, mental, and neurologic conditions and cancer. A total of 3,676,694 males and 3,701,904 females were followed up for 101.7 million person-years. During the 19-year follow-up period, 1,034,273 persons (14.0%) died. For 37 of the 39 selected medical conditions, mortality rates were larger and life expectancy shorter compared to the Danish general population. For these 37 disorders, MRRs ranged from 1.09 (95% confidence interval [CI]: 1.09 to 1.10) for vision problems to 7.85 (7.77 to 7.93) for chronic liver disease, while LYLs ranged from 0.31 (0.14 to 0.47) years (approximately 16 weeks) for allergy to 17.05 (16.95 to 17.15) years for chronic liver disease. Adjustment for air pollution had very little impact on the estimates; however, a limitation of the study is the possibility that the association between the different disorders and mortality could be explained by other underlying factors associated with both the disorder and mortality. Conclusions: In this study, we show estimates of incidence, age of onset, age of death, and mortality metrics (both MRRs and LYLs) for a comprehensive range of disorders. The interactive data visualization site (https://nbepi.com/atlas) allows more fine-grained analysis of the link between a range of disorders and key mortality estimates.publishedVersio

    Ovine pedomics : the first study of the ovine foot 16S rRNA-based microbiome

    Get PDF
    We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Three flocks were selected, one a flock with no signs of footrot or interdigital dermatitis, a second flock with interdigital dermatitis alone and a third flock with both interdigital dermatitis and footrot. The sheep were classified as having either healthy interdigital skin (H), interdigital dermatitis (ID) or virulent footrot (VFR). The ovine interdigital skin bacterial community varied significantly by flock and clinical condition. The diversity and richness of operational taxonomic units was greater in tissue from sheep with ID than H or VFR affected sheep. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the most abundant phyla comprising 25 genera. Peptostreptococcus, Corynebacterium and Staphylococcus were associated with H, ID and VFR respectively. Sequences of Dichelobacter nodosus, the causal agent of ovine footrot, were not amplified due to mismatches in the 16S rRNA universal forward primer (27F). A specific real time PCR assay was used to demonstrate the presence of D. nodosus which was detected in all samples including the flock with no signs of ID or VFR. Sheep with ID had significantly higher numbers of D. nodosus (104-109 cells/g tissue) than those with H or VFR feet

    Differential Effects of Aging on Fore– and Hindpaw Maps of Rat Somatosensory Cortex

    Get PDF
    Getting older is associated with a decline of cognitive and sensorimotor abilities, but it remains elusive whether age-related changes are due to accumulating degenerational processes, rendering them largely irreversible, or whether they reflect plastic, adaptational and presumably compensatory changes. Using aged rats as a model we studied how aging affects neural processing in somatosensory cortex. By multi-unit recordings in the fore- and hindpaw cortical maps we compared the effects of aging on receptive field size and response latencies. While in aged animals response latencies of neurons of both cortical representations were lengthened by approximately the same amount, only RFs of hindpaw neurons showed severe expansion with only little changes of forepaw RFs. To obtain insight into parallel changes of walking behavior, we recorded footprints in young and old animals which revealed a general age-related impairment of walking. In addition we found evidence for a limb-specific deterioration of the hindlimbs that was not observed in the forelimbs. Our results show that age-related changes of somatosensory cortical neurons display a complex pattern of regional specificity and parameter-dependence indicating that aging acts rather selectively on cortical processing of sensory information. The fact that RFs of the fore- and hindpaws do not co-vary in aged animals argues against degenerational processes on a global scale. We therefore conclude that age-related alterations are composed of plastic-adaptive alterations in response to modified use and degenerational changes developing with age. As a consequence, age-related changes need not be irreversible but can be subject to amelioration through training and stimulation

    Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults

    Get PDF
    The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; ♀  =  ♂). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging

    Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri

    Get PDF
    Aspergillus section Nigri comprises filamentous fungi relevant to biomedicine, bioenergy, health, and biotechnology. To learn more about what genetically sets these species apart, as well as about potential applications in biotechnology and biomedicine, we sequenced 23 genomes de novo, forming a full genome compendium for the section (26 species), as well as 6 Aspergillus niger isolates. This allowed us to quantify both inter-and intraspecies genomic variation. We further predicted 17,903 carbohydrateactive enzymes and 2,717 secondary metabolite gene clusters, which we condensed into 455 distinct families corresponding to compound classes, 49% of which are only found in single species. We performed metabolomics and genetic engineering to correlate genotypes to phenotypes, as demonstrated for the metabolite aurasperone, and by heterologous transfer of citrate production to Aspergillus nidulans. Experimental and computational analyses showed that both secondary metabolism and regulation are key factors that are significant in the delineation of Aspergillus species.Peer reviewe
    • …
    corecore