152 research outputs found

    Toward a Taylor rule for fiscal policy

    Get PDF
    This paper presents a procedure to determine policy feedback rules in dynamic stochastic general equilibrium (DSGE) models. We illustrate our approach with fiscal feedback rules for tax instruments in a standard medium-scale DSGE model. First, we approximate the optimal dynamic behavior of the economy using simple linear feedback rules. Then we calculate the elasticities of the model variables' moments with respect to the feedback coefficients. The feedback coefficients associated with the highest elasticities form the policy feedback rules to be estimated. Our results stress the importance of carefully modeled fiscal tax policy in two dimensions: (i) with respect to the dynamic responses of fiscal policy to exogenous shocks and (ii) with respect to the historical shock decomposition of fiscal policy. --Fiscal policy,Bayesian model estimation,Identification

    Evidence For Mixed Helicity in Erupting Filaments

    Full text link
    Erupting filaments are sometimes observed to undergo a rotation about the vertical direction as they rise. This rotation of the filament axis is generally interpreted as a conversion of twist into writhe in a kink-unstable magnetic flux rope. Consistent with this interpretation, the rotation is usually found to be clockwise (as viewed from above) if the post-eruption arcade has right-handed helicity, but counterclockwise if it has left-handed helicity. Here, we describe two non--active-region filament events recorded with the Extreme-Ultraviolet Imaging Telescope (EIT) on the {\it Solar and Heliospheric Observatory} ({\it SOHO}), in which the sense of rotation appears to be opposite to that expected from the helicity of the post-event arcade. Based on these observations, we suggest that the rotation of the filament axis is in general determined by the net helicity of the erupting system, and that the axially aligned core of the filament can have the opposite helicity sign to the surrounding field. In most cases, the surrounding field provides the main contribution to the net helicity. In the events reported here, however, the helicity associated with the filament ``barbs'' is opposite in sign to and dominates that of the overlying arcade.Comment: ApJ, accepte

    Photospheric flux cancellation and associated flux rope formation and eruption

    Full text link
    We study an evolving bipolar active region that exhibits flux cancellation at the internal polarity inversion line, the formation of a soft X-ray sigmoid along the inversion line and a coronal mass ejection. The evolution of the photospheric magnetic field is described and used to estimate how much flux is reconnected into the flux rope. About one third of the active region flux cancels at the internal polarity inversion line in the 2.5~days leading up to the eruption. In this period, the coronal structure evolves from a weakly to a highly sheared arcade and then to a sigmoid that crosses the inversion line in the inverse direction. These properties suggest that a flux rope has formed prior to the eruption. The amount of cancellation implies that up to 60% of the active region flux could be in the body of the flux rope. We point out that only part of the cancellation contributes to the flux in the rope if the arcade is only weakly sheared, as in the first part of the evolution. This reduces the estimated flux in the rope to  ⁣30\sim\!30% or less of the active region flux. We suggest that the remaining discrepancy between our estimate and the limiting value of  ⁣10\sim\!10% of the active region flux, obtained previously by the flux rope insertion method, results from the incomplete coherence of the flux rope, due to nonuniform cancellation along the polarity inversion line. A hot linear feature is observed in the active region which rises as part of the eruption and then likely traces out field lines close to the axis of the flux rope. The flux cancellation and changing magnetic connections at one end of this feature suggest that the flux rope reaches coherence by reconnection shortly before and early in the impulsive phase of the associated flare. The sigmoid is destroyed in the eruption but reforms within a few hours after a moderate amount of further cancellation has occurred.Comment: Astron. Astrophys., in pres

    A Parametric Study of Erupting Flux Rope Rotation. Modeling the "Cartwheel CME" on 9 April 2008

    Full text link
    The rotation of erupting filaments in the solar corona is addressed through a parametric simulation study of unstable, rotating flux ropes in bipolar force-free initial equilibrium. The Lorentz force due to the external shear field component and the relaxation of tension in the twisted field are the major contributors to the rotation in this model, while reconnection with the ambient field is of minor importance. Both major mechanisms writhe the flux rope axis, converting part of the initial twist helicity, and produce rotation profiles which, to a large part, are very similar in a range of shear-twist combinations. A difference lies in the tendency of twist-driven rotation to saturate at lower heights than shear-driven rotation. For parameters characteristic of the source regions of erupting filaments and coronal mass ejections, the shear field is found to be the dominant origin of rotations in the corona and to be required if the rotation reaches angles of order 90 degrees and higher; it dominates even if the twist exceeds the threshold of the helical kink instability. The contributions by shear and twist to the total rotation can be disentangled in the analysis of observations if the rotation and rise profiles are simultaneously compared with model calculations. The resulting twist estimate allows one to judge whether the helical kink instability occurred. This is demonstrated for the erupting prominence in the "Cartwheel CME" on 9 April 2008, which has shown a rotation of \approx 115 degrees up to a height of 1.5 R_sun above the photosphere. Out of a range of initial equilibria which include strongly kink-unstable (twist Phi=5pi), weakly kink-unstable (Phi=3.5pi), and kink-stable (Phi=2.5pi) configurations, only the evolution of the weakly kink-unstable flux rope matches the observations in their entirety.Comment: Solar Physics, submitte

    Age-related glomerulosclerosis and interstitial fibrosis in Milan normotensive rats: A podocyte disease

    Get PDF
    Age-related glomerulosclerosis and interstitial fibrosis in Milan normotensive rats: A podocyte disease. In Milan normotensive (MNS) rats glomerulosclerosis and interstitial fibrosis develop spontaneously in the absence of hypertension. Renal changes were sequentially assessed in these rats between 2 and 10 months of age. At 10 months, rats were characterized by heavy proteinuria, increased serum creatinine, focal or global glomerulosclerosis in 51 ± 12% of the glomeruli as well as tubulointerstitial injury involving > 25% of the section area. Cell injury in podocytes (evidenced as increased expression of desmin and by electron microscopy) and interstitial fibroblasts (increased expression of α-smooth muscle actin) and mild glomerular hypertrophy were witnessed as early as three to four months of age and preceded glomerulosclerosis and interstitial fibrosis. Only minor evidence of mesangial cell activation (as assessed by glomerular de novo α-smooth muscle actin or type I collagen expression or increased cell proliferation) was noted throughout the observation period. Later stages of the disease were characterized by glomerular and/or tubulointerstitial macrophage influx and osteopontin expression (a chemoattractant), mild accumulation of lymphocytes, platelets, fibrinogen, as well as by a progressive accumulation of various matrix proteins. Progressive renal disease in MNS rats is thus noteworthy for the relative lack of mesangial cell activation. Rather, early podocyte damage, induced by yet unknown mechanisms, may underlie the development of glomerulosclerosis and subsequent interstitial fibrosis

    Klimaneutrale Industrie

    Get PDF
    KLIMANEUTRALE INDUSTRIE Klimaneutrale Industrie / Altrock, Martin (Rights reserved) ( -

    Triggering an eruptive flare by emerging flux in a solar active-region complex

    Full text link
    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade (approximately 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and Stellar Flares. 25 pages, 12 figure

    LEMUR: Large European Module for solar Ultraviolet Research. European contribution to JAXA's Solar-C mission

    Get PDF
    Understanding the solar outer atmosphere requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1" and 0.3"), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 17 and 127 nm. The LEMUR slit covers 280" on the Sun with 0.14" per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km/s or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission.Comment: 35 pages, 14 figures. To appear on Experimental Astronom

    Economic Policy Uncertainty, Trust and Inflation Expectations *

    Get PDF
    Abstract Theory and evidence suggest that in an environment of well-anchored expectations, temporary news or shocks to economic variables, should not affect agents' expectations of inflation in the long term. Our estimated structural VARs show that both longand short-term inflation expectations are sensible to policy-related uncertainty shocks. A rise of long-term inflation expectations in times of economic contraction, in response to such shocks, suggests that heightened policy uncertainty observed during the recent years indeed raises concerns about future inflation. Furthermore, both monetary and fiscal policy-related uncertainties are significant for the negative dynamics in citizens' trust in the ECB. JEL classification: E02, E31, E58, E63, P1
    corecore