521 research outputs found

    Physiologically Based Pharmacokinetic Modelling: A Sub-Compartmentalized Model of Tissue Distribution

    Get PDF
    We present a sub-compartmentalized model of drug distribution in tissue that extends existing approaches based on the well-stirred tissue model. It is specified in terms of differential equations that explicitly account for the drug concentration in erythrocytes, plasma, interstitial and cellular space. Assuming, in addition, steady state drug distribution and by lumping the different sub-compartments, established models to predict tissue-plasma partition coefficients can be derived in an intriguingly simple way. This direct link is exploited to explicitly construct and parameterize the sub-compartmentalized model for moderate to strong bases, acids, neutrals and zwitterions. The derivation highlights the contributions of the different tissue constituents and provides a simple and transparent framework for the construction of novel tissue distribution models

    Software Supported Modelling in Pharmacokinetics

    Get PDF
    A powerful new software concept to physiologically based pharmacokinetic (PBPK) modelling of drug disposition is presented. It links the inherent modular understanding in pharmacology with orthogonal design principles from software engineering. This concept allows for flexible and user-friendly design of pharmacokinetic whole body models, data analysis, hypotheses testing or extrapolation. The typical structure of physiologically-based pharmacokinetic models is introduced. The resulting requirements from a modelling and software engineering point of view and its realizations in the software tool MEDICI-PK [9] are described. Finally, an example in the context of drug-drug interaction studies is given that demonstrates the advantage of defining a whole-body pharmacokinetic model in terms of the underlying physiological processes quite impressively: A system of 162 ODEs is automatically compiled based on the specification of 7 local physiological processes only

    Bismuth molybdate catalysts prepared by mild hydrothermal synthesis: Influence of pH on the selective oxidation of propylene

    Get PDF
    A series of bismuth molybdate catalysts with relatively high surface area was prepared via mild hydrothermal synthesis. Variation of the pH value and Bi/Mo ratio during the synthesis allowed tuning of the crystalline Bi-Mo oxide phases, as determined by X-ray diffraction (XRD) and Raman spectroscopy. The pH value during synthesis had a strong influence on the catalytic performance. Synthesis using a Bi/Mo ratio of 1/1 at pH ≄ 6 resulted in Îł-Bi2_{2}MoO6_{6}, which exhibited a better catalytic performance than phase mixtures obtained at lower pH values. However, a significantly lower catalytic activity was observed at pH = 9 due to the low specific surface area. Îł- Bi2_{2}MoO6_{6} synthesized with Bi/Mo = 1/1 at pH = 6 and 7 exhibited relatively high surface areas and the best catalytic performance. All samples prepared with Bi/Mo = 1/1, except samples synthesized at pH = 1 and 9, showed better catalytic performance than samples synthesized with Bi/Mo = 2/3 at pH = 4 and 9 and Îł-Bi2MoO6 synthesized by co-precipitation at pH = 7. At temperatures above 440 °C, the catalytic activity of the hydrothermally synthesized bismuth molybdates started to decrease due to sintering and loss of surface area. These results support that a combination of the required bismuth molybdate phase and a high specific surface area is crucial for a good performance in the selective oxidation of propylene

    Experimental Evidence for the Incorporation of Two Metals at Equivalent Lattice Positions in Mixed-Metal Metal–Organic Frameworks

    Get PDF
    Metal–organic frameworks containing multiple metals distributed over crystallographically equivalent framework positions (mixed‐metal MOFs) represent an interesting class of materials, since the close vicinity of isolated metal centers often gives rise to synergistic effects. However, appropriate characterization techniques for detailed investigations of these mixed‐metal metal–organic framework materials, particularly addressing the distribution of metals within the lattice, are rarely available. The synthesis of mixed‐metal FeCuBTC materials in direct syntheses proved to be difficult and only a thorough characterization using various techniques, like powder X‐ray diffraction, X‐ray absorption spectroscopy and electron paramagnetic resonance spectroscopy, unambiguously evidenced the formation of a mixed‐metal FeCuBTC material with HKUST‐1 structure, which contained bimetallic Fe−Cu paddlewheels as well as monometallic Cu−Cu and Fe−Fe units under optimized synthesis conditions. The in‐depth characterization showed that other synthetic procedures led to impurities, which contained the majority of the applied iron and were impossible or difficult to identify using solely standard characterization techniques. Therefore, this study shows the necessity to characterize mixed‐metal MOFs extensively to unambiguously prove the incorporation of both metals at the desired positions. The controlled positioning of metal centers in mixed‐metal metal–organic framework materials and the thorough characterization thereof is particularly important to derive structure–property or structure–activity correlations

    Post-synthetic Modification of DUT-5-based Metal Organic Frameworks for the Generation of Single-site Catalysts and their Application in Selective Epoxidation Reactions

    Get PDF
    New single‐site catalysts based on mixed‐linker metal‐organic frameworks with DUT‐5 structure, which contain immobilized Co2+, Mn2+ and Mn3+ complexes, have successfully been synthesized via post‐synthetic modification. 2,2’‐Bipyridine‐5,5’‐dicarboxylate linkers were directly metalated, while 2‐amino‐4,4’‐biphenyldicarboxylate linkers were post‐synthetically modified by their conversion to Schiff‐base ligands and a subsequent immobilization of the metal complexes. The resulting materials were used as catalysts in the selective epoxidation of trans‐stilbene and the activities and selectivities of the different catalysts were compared. The influence of various reaction parameters on conversion, yield and selectivity were investigated. Very low catalyst amounts of 0.02 mol % were sufficient to obtain a high conversion of trans‐stilbene using molecular oxygen from air as the oxidant. For cobalt‐containing MOF catalysts, conversions up to 90 % were observed and, thus, they were more active than their manganese‐containing counterparts. Recycling experiments and hot filtration tests proved that the reactions were mainly catalyzed via heterogeneous pathways

    Synthesis and post-synthetic modification of amine-, alkyne-, azide- and nitro-functionalized metal-organic frameworks based on DUT-5

    Get PDF
    Functionalized 4,4â€Č-biphenyldicarboxylic acid molecules with additional amine, alkyne, azide or nitro groups were prepared and applied in the synthesis of novel metal-organic frameworks and mixed-linker metal-organic frameworks isoreticular to DUT-5. The properties of the frameworks could be tuned by varying the number of functional groups in the materials and the amine groups were employed in post-synthetic modification reactions without changing the framework structure or significantly decreasing the porosity of the materials. © The Royal Society of Chemistry 2015

    Dynamic transformation of small Ni particles during methanation of CO under fluctuating reaction conditions monitored by X-ray absorption spectroscopy

    Get PDF
    A 10 wt.-% Ni/Al2_{2}O3_{3} catalyst with Ni particles of about 4 nm was prepared and applied in the methanation of CO2_{2} under dynamic reaction conditions. Fast phase transformations between metallic Ni, NiO and NiCO3_{3} were observed under changing reaction atmospheres using operando X-ray absorption spectroscopy (XAS). Removing H2_{2} from the feed gas and, thus, simulating a H2_{2} dropout during the methanation reaction led to oxidation of the active sites. The initial reduced state of the Ni particles could not be recovered under methanation atmosphere (H2_{2}/CO2_{2} = 4); this was only possible with an effective reactivation step applying H2_{2} at increased temperatures. Furthermore, the cycling of the gas atmospheres resulted in a steady deactivation of the catalyst. Operando XAS is a powerful tool to monitor these changes and the behavior of the catalyst under working conditions to improve the understanding of the catalytic processes and deactivation phenomena

    In Vitro HIV-1 Evolution in Response to Triple Reverse Transcriptase Inhibitors & In Silico Phenotypic Analysis

    Get PDF
    Background Effectiveness of ART regimens strongly depends upon complex interactions between the selective pressure of drugs and the evolution of mutations that allow or restrict drug resistance. Methods Four clinical isolates from NRTI-exposed, NNRTI-naive subjects were passaged in increasing concentrations of NVP in combination with 1 ”M 3 TC and 2 ”M ADV to assess selective pressures of multi-drug treatment. A novel parameter inference procedure, based on a stochastic viral growth model, was used to estimate phenotypic resistance and fitness from in vitro combination passage experiments. Results Newly developed mathematical methods estimated key phenotypic parameters of mutations arising through selective pressure exerted by 3 TC and NVP. Concentrations of 1 ”M 3 TC maintained the M184V mutation, which was associated with intrinsic fitness deficits. Increasing NVP concentrations selected major NNRTI resistance mutations. The evolutionary pathway of NVP resistance was highly dependent on the viral genetic background, epistasis as well as stochasticity. Parameter estimation indicated that the previously unrecognized mutation L228Q was associated with NVP resistance in some isolates. Conclusion Serial passage of viruses in the presence of multiple drugs may resemble the selection of mutations observed among treated individuals and populations in vivo and indicate evolutionary preferences and restrictions. Phenotypic resistance estimated here “in silico” from in vitro passage experiments agreed well with previous knowledge, suggesting that the unique combination of “wet-” and “dry-lab” experimentation may improve our understanding of HIV-1 resistance evolution in the future
    • 

    corecore