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Abstract We present a sub-compartmentalized model of drug distribution in tissue
that extends existing approaches based on the well-stirred tissue model. It is specified
in terms of differential equations that explicitly account for the drug concentration in
erythrocytes, plasma, interstitial and cellular space. Assuming, in addition, steady state
drug distribution and by lumping the different sub-compartments, established models
to predict tissue-plasma partition coefficients can be derived in an intriguingly simple
way. This direct link is exploited to explicitly construct and parameterize the sub-
compartmentalized model for moderate to strong bases, acids, neutrals and zwitterions.
The derivation highlights the contributions of the different tissue constituents and
provides a simple and transparent framework for the construction of novel tissue
distribution models.

Keywords Lumped tissue distribution models - Partition coefficients - PBPK -
PK/PD - Mechanistic modelling - Unbound fraction

Introduction

Physiologically based pharmacokinetic (PBPK) modelling and simulation is increasin-
gly recognized and used as a supporting tool in drug discovery and development [1-6].
The aim is to analyze, interpret and predict the pharmacokinetics of drug candidates
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in the different stages of drug discovery and development [7,8]. In toxicokinetics,
physiologically based models are frequently used for the assessment of toxicologi-
cal risks to humans [9-11]. A distinctive feature of PBPK models is the underlying
mechanistic description of the behavior of drugs in the various tissues and the blood
[11]. A significant limitation to their application within the pharmaceutical industry
has been the requirement of vast quantities of data for model construction [12]. In
broad terms, PBPK models rely on two types of input data: physiological parame-
ters like, e.g., blood flows, organ volumes, tissue composition; and compound-related
parameters like, e.g, unbound fraction in plasma, blood-plasma ratio, clearance and
tissue partition coefficients.

Partition coefficients are a measure of the steady state drug concentration between
two compartments. The tissue-plasma partition coefficient describes the steady state
drug distribution in tissue compared to the plasma concentration. The experimental
determination of tissue affinities can be costly and time consuming, and requires a
substantial amount of compound, which is rarely available during discovery and early
candidate selection [12]. As a solution to this problem Poulin and Theil proposed in
their seminal papers [13, 14] to apriori predict the tissue distribution of a drug based
on a mechanistic description of the underlying physiology and the properties of drugs.
Their key idea is to regard the most important tissue constituents—Ilike water, neutral
lipids, phospholipids, macro-molecules—and to predict the overall tissue distribution
by means of the distribution into these tissue constituents. The extent of drug distribu-
tion into the tissue constituents is then estimated from readily available in vitro data.
Utilizing these achievements, generic PBPK models have been designed that can be
used in early drug discovery [1-3,15]. Subsequent predictive models [12,16, 17] rely
on the same idea, but differ in the way the tissue is composed and/or the distribution
into the different constituents is approximated. Some of these models are designed for
special compound classes, like moderate to strong bases, acids, zwitterions [12,16].

When aiming at more detailed PBPK models or interfacing with pharmacody-
namic processes, current tissue partitioning models have two major limitations: (i)
They are built on a lumped tissue compartment model, e.g., lumping together the
different tissue sub-compartments, like the interstitial and cellular sub-compartment,
and (ii) they assume a quasi-equilibrium between the concentrations in the different
sub-compartments (“steady state assumption”). Furthermore, the time-dependence
of diffusion processes and/or active transport processes between the different sub-
compartments cannot be incorporated, since it violates the underlying steady state
assumption.

More detailed and refined PBPK models are known, e.g., [7,8,11,18], but these
models are either specifically designed for the compound of interest, or lack a gene-
ric parameterization in terms of readily available experimental data. In this article we
present a sub-compartmentalized model of drug distribution in tissues, defined in terms
of a system of differential equations. These explicitly model the time evolution of the
drug concentration in erythrocytes, plasma, the interstitial and cellular space. In the
generic case, drug exchange by passive diffusion, non-saturable distribution processes
and the absence of metabolic processes is assumed. By exploiting recent developments
in apriori prediction of tissue partition coefficients, the sub-compartmentalized tis-
sue distribution model can be parameterized in terms of readily available in vitro
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data, thus enabling a priori predictions in early drug discovery. Parameterizations for
different drug classes, including moderate to strong bases, acids, neutrals and zwit-
terions, are given. Assuming steady state drug distribution and lumping the different
sub-compartments, existing models of tissue partition coefficients can be re-obtained
in an intriguingly simple and clear way.

Drug distribution in animals and humans is a complex process, and the presented
model is a simplified mechanism-based description of it. In the case of partition coeffi-
cients, though, such a simplistic description has proven to be very useful in the context
of apriori prediction of the pharmacokinetics of new chemical entities. The present
model should be seen as a starting point for modelling the tissue distribution of drugs.
Whenever additional experimental data or more refined information is available, the
model equations should be refined in order to account for the additional insight. This
regards transporters in tissues, e.g. [19], distribution in red blood cells, e.g. [20], the
possibility of metabolic processes in diverse tissues, e.g. [21], or the consideration
of specific tissue binding components that may be important for the specific drug of
interest, e.g. [22].

Methods

Tissue-plasma partition coefficients are a measure of the steady state distribution of
the total drug concentration in tissue C%* compared to the total plasma concentration
CPSS je.,

ey

Tissue-unbound plasma partition coefficients K"P are a measure of the steady state
distribution between the total drug in tissue to the unbound drug in the plasma water
P, ie.,

Kt — W . 2)

The vast majority of current generic PBPK models is build on a lumped, well-stirred
tissue compartment model (e.g., [1,23,24]) using K*P or K"P as an input parameter.

Sub-compartment tissue distribution

In this section, we present a sub-compartment tissue distribution model as a generaliza-
tion of existing models to predict tissue partitioning coefficients. It is specified in terms
of differential equations for the drug concentration in erythrocytes (e), plasma (p),
interstitial space (i) and cellular space (c), and explicitly allows to model the transfer
processes between the different sub-compartments. The choice of sub-compartments
is motivated by the availability of physiological data and for pharmacokinetic and phar-
macodynamic reasons [11,19,20]. For the generic parameterization, drug exchange by
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passive diffusion, non-saturable distribution processes and the absence of metabolic
processes is assumed, as in existing models for predicting tissue partition coefficients
[12-14,16]. Extensions are discussed. Finally, we will demonstrate, how to re-obtain
established partition coefficient models by imposing additional assumptions. Vice
versa, we will use existing models to construct and a priori parameterize the proposed
sub-compartment tissue model.

Model equations

The sub-compartmentalized tissue distribution model is based on the following
assumptions: (i) the distribution of the drug to- and from the organ is governed by
advection through the blood flow Q [volume/time]; (ii) the drug exchange between
the different sub-compartments of volume V [volume] is governed by passive diffu-
sion, described in terms of the permeability-surface area product P.S [volume/time];
(iii) only the unbound and unionized drug Cy, = fn - Cy can cross membranes, where
C, denotes the unbound drug concentration in tissue water, and fn = Cy;,/C, denotes
the neutral unbound fraction in the water, which is typically calculated according to
the Henderson—Hasselbalch relation. If the compound is not ionizable, we set fn = 1.
Under these assumptions the time evolution of the total drug concentrations C in the
different sub-compartments in a non-eliminating tissue is modeled by the following
system of differential equations:

VG%C"’ = Q (C§, — C°) — PSP (fn°C{ — fnPCY) ©)

vpj—tcp = Q (CP — CP) + PSP (fn°C — fnPCY)

—PSPi(fnPCE — ' C}) )
d i . o
vigC= PSPH(faPCY — fn'CL) — PS™(fn'C) — f°CY) )
d L
Ve Ce= PS*(fn'C} — fn°CY), (6)

where the superscripts X = e, p, i, ¢ refer to the different sub-compartments, and the
pairs x:y refer to neighboring sub-compartments x and y. CiI; and Cf denote
the incoming drug concentrations in plasma and erythrocytes, respectively—typically
the distribution model is part of a whole body physiologically based pharmacokinetic
model, in which case the incoming concentrations are linked to out-going concen-
trations of the preceding organ/tissue (e.g. the arterial concentration). In the above
equations, the term Q (Cf;1 -C x) with x =e, p models the advection of the drug by
the blood flow, while the term P S*Y (anCl’]‘ — fnyC&') with X, y=e, p, i, ¢ models
the passive diffusion of the unbound unionized drug across the capillary wall or the
cellular membrane.

Under the above assumptions, the distribution of the drug into the different sub-
compartments is influenced by three processes: (i) the proportion of unbound to
total drug concentration, (ii) the velocity of the transfer processes between sub-
compartments, and (iii) the amount of ionization (for ionizable compounds).
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In case of a linear, i.e., non-saturable relationship between the unbound aqueous

and the total drug concentration, it is

Cl=fu*.C*, @)
where fu* denotes the unbound fraction in the sub-compartment x, which is defined as
the steady state distribution between the unbound aqueous concentration and the total
concentration fu* = C}/C*. Replacing C}} by fu* - C* results a closed and solvable
system of differential equations for the sub-compartment tissue model. If, however, the
relation between the total concentration C and the unbound aqueous concentration Cy
is assumed to be non-linear, e.g., due to saturable binding processes, the generic Eqgs.
3-6 have to be extended. We will comment on this and illustrate possible extensions
below.

First, we consider a linear relation between the unbound aqueous and the total drug
concentration. We restrict our consideration to a single sub-compartment x to derive
a predictive equation for fu*. Let us assume that the compound partitions into neutral
lipids or phospholipids, and is present in water in dissolved form or bound to proteins;
other effects are considered neglectable. Then, the total amount of drug A* in the
sub-compartment x is given by [12,16,25]

A¥ = Ay + APT 4 A" 4 AP (8)

where Ay denotes the amount of unbound drug in water, AP' the amount of bound
drug in the water, A" and A" the amount of drug partitioned into neutral lipids (nl)
and phospholipids (np). Let us denote by V#* the fractional volume of the constituent
z (e.g., water, neutral or phospholipids) with respect to the total volume of the sub-
compartment X, i.e.,

. vz
VZ X — W. (9)
Dividing Eq. 8 by the total sub-compartment volume V* yields
CX = (Cy + Cpr) BAVA Cnl . an:x + CPP . yupix (10)

with Cy = Ay/V¥, CP" = AP /yY, ™ = AM/y" and C™P = A"/ V™.
Dividing by the unbound aqueous concentration C, and exploiting linear binding
and distribution processes such that C, = fu*C¥*, we finally obtain

1 Py (O (o :
— =1 pwx ~ nl:x =) ypx, 11
wo () (@) (2) ab

The concentration ratios on the right hand side of Eq. 11 can be interpreted as par-
tition coefficients associated with the different sub-compartment constituents: the
protein-unbound, neutral lipids-unbound and neutral phospholipids-unbound parti-
tion coefficients
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1
KPpru — C_pr’ Knl:u — 2’ Ko C_np (12)
Cu Cu Cu
This finally yields
fix =+ Kpr:u) LYW Kn]:u . an:x 4 KPP ympix (13)
u

Hence, the inverse of the unbound fraction is a weighted sum of different constituent
partition coefficients. The weighting factors are given by the volume fractions of
the tissue constituents. The above relation is not restricted to the chosen example,
but is much more general: Assume that the sub-compartment comprises water and
constituents z € {a, b, c, ...}. Then, the unbound fraction fu* satisfies

1 . . .
f_x — yWx + Z K% . yzx (14)
u z€{a,b,c,...}

In order to derive apriori predictive models, the tissue constituents partition coef-
ficients are approximated by parameters that are assessable through in vitro measu-
rements. To recognize this and to find appropriate experimental realizations was the
break-through in a priori determination of partition coefficients [13,14]. The diffe-
rences between existing tissue distribution models regard (i) the tissue constituents
that are taken into account and (ii) the approximation of partition coefficients for the
resulting constituents by in vitro data. Typically, ionization effects, potential binding
to acidic phospholipids and partitioning into the neutral- and phospholipids are pro-
cesses associated with the cellular space. Important processes in the interstitial space
include binding to macro-molecules and ionization effects. Plasma and erythrocytes
partitioning are typically measured directly by in vitro experiments.

Finally, let us consider a non-linear relation between the unbound and total concen-
tration. E.g., assume that binding in the interstitial space is saturable, specified in terms
of the dissociation constant Kp and the maximum number of possible binding sites
B. Then, Eq.7 for x=1 has to be replaced by the equation

Cl‘1=5(C‘—B—KD+\/(C‘—B—KD)2+4KDC‘). (15)

Further extensions can be realized in a similar way.

Lumped steady state tissue partitioning

Common partition coefficient models can be directly derived from the sub-
compartmentalized tissue distribution model by imposing two additional assump-
tions: the drug exchange between the different sub-compartments is in dynamical
equilibrium (at steady state), and the interstitial and cellular tissue sub-compartments
are lumped. From the steady state assumption we deduce that the unionized, unbound
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aqueous concentration is identical in all sub-compartments, i.e.,
faPCY = fn'C! = fn°C¢. (16)

Recalling that the unbound aqueous concentration is defined with respect to water
volume and exploiting Eq. 16, we obtain for the unbound fraction in the tissue

1 C' (Vi veey) vt
fut  CL (VWG + VWeCs)/ v
-1 VWt

Vi Ve VWi ywe
sy b M _, 18
(fn1 fu' + fn¢ fuc) ( fn' + fn® ) vt (18)

where the subscripts wt, wi and wc refer to the tissue-, interstitial- and cellular water,
and V' = V! + V¢ and VW' = VW + V¥ Defining the neutral fraction in tissue fn'
by

a7)

ywtpwi pwe
CE (1
we end up with the relation
vt Vi Ve
ffl  foifal |

(20)

By definition, the tissue-unbound plasma partition coefficient is given by K" =
C'/CPE. This yields

g _ TP

—, 21
fn' fu' @

where we have again exploited that at steady state the unionized, unbound aqueous
concentration are identical, i.e., fnPCE = fnthl. Combining Eqgs.20 and 21, we get
the central relation between the tissue-unbound plasma partition coefficient and the
unbound fractions in the different sub-compartments:
o _ TP VI P e

fn! fu'  fn¢ fuc

(22)

Since we have K"P = fuP - K""P| we may alternatively predict the tissue-plasma
partition coefficient K“P. Finally we remark that Eq.22 easily generalizes to more
than two tissue sub-compartments.

Results

In this section we exploit Egs.21 and 22 in order to derive and analyze existing
models for the prediction of tissue-(unbound) plasma partition coefficients in a unified,
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Fig.1 Tissue decomposition and processes underlying the a priori partition coefficient models for moderate
to strong bases by Rodgers et al. (left), and for neutrals and acids by Rodgers and Rowland (right). For details,
see the text

transparent and simple way. On the other hand, the design principles and the parame-
terization of the existing models can be used to construct apriori sub-compartment
tissue distribution models.

Moderate to strong bases and type 1 zwitterions

Rodgers etal. [12,16] recently developed mechanistic equations to predict the tissue-
unbound plasma partition coefficient for moderate to strong bases (pK, > 7.0) and
type 1 zwitterions (at least one pK; > 7.0). The model assumes that the unbound
(dissolved) drug is possibly ionized in the extra-cellular and intra-cellular space. In
the intra-cellular space, the ionized drug may bind to acidic phospholipids (rem),
while the neutral form may distribute into neutral lipids (nl) and phospholipids (np).
Furthermore it is assumed that only the neutral species can cross membranes by passive
diffusion; see Fig. 1, left for illustration. In the following derivation, we identify the
extra-cellular and intra-cellular space in [12, 16] with the interstitial and cellular space.
Moreover, we denote the water in the interstitial and cellular space by (wi) and (wc).
The model is based on the following approximations of the constituent partition
coefficients: (i) cellular residual tissue components-unbound drug partitioning:

Kremuc _ (1 _ fnc) KA’AP[AP—]rem’ (23)

where [AP~]™™ denotes the concentration of acidic phospholipids in the residual
space, with corresponding association constant Ka ap. (ii) Neutral lipids-unbound
drug partitioning:

K" = fn Py, (24)

where P,., is chosen to be the octanol-water partition coefficient P,.,, for non-adipose
tissue and the vegetable oil-water partition coefficient Py, for adipose tissue. (iii)
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Neutral phospholipids-unbound drug partitioning:
K™Y = n° (0.3 - Py +0.7) (25)

assuming that neutral phospholipids behave like a mixture of 30% neutral lipids and
70% water (as initially suggested by Poulin and Theil in [13]).

Sub-compartmentalized tissue distribution model

Since no interstitial binding is considered, the unbound fraction in the interstitial space
is

— =1, (26)
while we obtain

1 . . .
= VY 4 € Py VI 0 (0.3 Py + 0.7) VP
u

+(1 — fn) K, ap[APT]° 27)

for the cellular unbound fraction, where we exploited the relation [APT]¢ =
[APTJremyeme  Note that V¥¢ = V*!'. V!/V® so that volume fractions with
reference to the cellular space can easily be converted into those with reference to
the tissue space (and thus we can use the readily available data in [12,16,18]).

Lumped steady state model

Exploiting Eq.22 we obtain the tissue-unbound plasma partition coefficient for
moderate to strong bases:

| o P . .
K5 = VI S VS 0P Py VI 0P (0.3 Py +0.7) VP
n

1 —n°
fn°

+fnP Ka.ap[AP7T, (28)

where [AP~]' denotes the concentration of acidic phospholipids in tissue, which is
related to the corresponding cellular concentration [AP~]° by [AP™ [Vt = [AP]".
We remark that

1 —fn°
fn°

— 10~ (PHc—pPKa) (29)

for mono-protonic bases. Typically, values for Ka_ap are not readily available for the
different tissues. In order to estimate the unknown association constants, Rodgers etal.
suggested to determine Ka ap for the erythrocytes from the blood-plasma ratio B: P
and use this value as an approximation for the association constants in the other tissues.
For details see [12,26]. Parameter values can be found in [12,16] for the species rat.
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Very weak bases, neutrals, acids and type 2 zwitterions

In [16] Rodgers and Rowland developed mechanistic equations to predict tissue-
unbound plasma partition coefficients for very weak bases (pK, < 7.0), neutrals, acids
and type 2 zwitterions (no pK, > 7.0). The model assumes that the drug is dissolved
and possibly ionized (for acids, very weak bases, and type 2 zwitterions) in the extra-
cellular and intra-cellular space. It may bind in either form macromolecules (albumin
for acids and weak bases, lipoproteins for neutrals) in the extra-cellular space, and
distribute into neutral lipids and phospholipids in unionized form in the intra-cellular
space. Furthermore it is assumed that only the neutral species can passively diffuse
across membranes; see Fig. 1 (right) for illustration. In the following derivation, we
again identify the extra-cellular and intra-cellular space in [16] with the interstitial and
cellular space.

The model is based on the following approximations of the constituents partition
coefficients: (i) Interstitial protein-unbound drug partitioning:

KP™ = K5 prPR™, (30)
where PR denotes the concentration of interstitial binding protein (albumin in the
case of acidic, very weak basic and type 2 zwitterions, or lipoproteins in the case of
neutral compounds), and Ka pr refers to the corresponding association constant. (ii)
Neutral lipids-unbound drug partitioning:

K™ = fn Py, (31
where P,., is chosen to be the octanol-water partition coefficient P,.,, for non-adipose
tissue and the vegetable oil-water partition coefficient Pyq.y, for adipose tissue. (iii)
Neutral phospholipids-unbound drug partitioning:

K" = n® (0.3 Py +0.7) (32)

assuming that neutral phospholipids behave like a mixture of 30% neutral lipids and
70% water (as above).

Sub-compartmentalized tissue distribution model

For the unbound fraction in the interstitial space, Eq. 14 yields

1 .
— =1+ KA’pRPRl, (33)
fu'

while we obtain

1 X . .
— = YWV L P, VIS 4 € (0.3 Py + 0.7) VP (34)

fu¢

for the cellular unbound fraction.
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homogeneous model

Poulin and Theil model Willmann et al. model

W = water

NL=neutral lipids Plasma NP = phospholipids_ Plasma
L =lipids PR = proteins
W= water Py

®
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® . Tissue . . @ © .. ®e
L 1) Drug ® © @
molecules oo © Py

NS

dissolved binding protein
eutral lipids NP = phospholipid J

W = water

Tissue

\ L= lipids PR = proteins

Fig. 2 Tissue decomposition and processes underlying the a priori partition coefficient models by Poulin
and Theil (left), and by Willmann etal. (right). For details, see the text

Lumped steady state model

Exploiting Eq. 22 we obtain the tissue-unbound plasma partition coefficient for very
weak bases, acids, neutrals and group 2 zwitterions

fnP .
KU = Vit 4 Ky prPR' + - CVW“+fin okt

+fnP (0.3 Py, + 0.7) VP (35)

where we have exploited that PR' = PR' V. Rodgers and Rowland suggest to
determine K pr in plasma from fuP and P,,.,. For details see [ 16, Eq. (13)]. Parameter
values can be found in [16,26] for the species rat.

Poulin-Theil model

In their seminal papers in 2000/01 [13,14], Poulin and Theil proposed an in silico
approach to a priori predict tissue-plasma partition coefficients solely based on few
compound specific in vitro data (see Fig. 2). They assumed that the compound is present
in dissolved form in tissue water, that it may bind to macromolecules in the interstitial
space, and distribute into neutral lipids or phospholipids in the cellular space, while
other effects are considered negligible. These equations have subsequently been cor-
rected by Berezhovskiy [25,Eq. (64)] (see also [16]). For the present model we will
only derive the unbound fraction in the tissue fu', since only the total tissue water is
considered by Poulin and Theil rather than a distinction between the interstitial and
cellular water as in the previous models. The unbound fraction in tissue is linked to
the tissue partition coefficient via K*P = fuP /fu', if ionization is not considered. The
lumping of the tissue space in the model by Poulin and Theil has the following conse-
quence for the sub-compartmentalized tissue model: Either the generic equations are
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reduced to account for the change of tissue concentration only, or alternatively, one
sets ful = fu® = fu' and stays with the full system of equations.

The model (including the corrections) is based on the following approximations:
(i) Protein-unbound drug partitioning:

1/(2fuP) — 1/2; non-adipose tissue,
KPrut = 1, adipose tissue, (36)
1/fuP — 1; plasma

where fuP denotes the unbound fraction in plasma as measured by invitro assays. (ii)
Neutral lipids-unbound drug partitioning:

KM = P, (37)

where P,., is chosen to be the octanol-water partition coefficient P,.,, for non-adipose
tissue and the vegetable oil-water partition coefficient Py, for adipose tissue. (iii)
Neutral phospholipids-unbound drug partitioning:

KUt — 3. gt 4 (7, (38)

where it is assumed that neutral phospholipids behave like a mixture of 30% neutral
lipids and 70% water. For ionizable compounds, Py,.y has to be replaced by fn- Pyo.y,.
In view of Egs.37 and 38 this implies that a correction for ionizable compounds is
only made for adipose tissue (see Discussion).

Sub-compartmentalized tissue distribution model

Based on the fundamental relation 13, the unbound fraction in non-adipose tissue fu'
is given by

1 1 1 , . .
= (W 5) VYV P VI 4 (0.3 Py + 0.7) VP (39)

For adipose tissue it is

1 . . .
= VY P VI (03 Py +0.7) VP (40)
u

Lumped steady state model
By neglecting ionization (fn = 1), as in [13], we exploit Eq.21 and K"P = K\ . fuP

to obtain the tissue-plasma partition coefficient as published by Poulin and Theil, with
subsequent corrections according to Berezhovskiy. For non-adipose tissue it is

t:p

(1/2fuP) + 1/2) VYU Poyy VI 4 (0.3 Py +0.7) VP

. @l
(1/fuP) VWP £ Poy VP + (0.3 Poy + 0.7) VPP @1

@ Springer



J Pharmacokinet Pharmacodyn (2007) 34:789-806 801

and for adipose tissue it is

V¥ Prow VI 4+ (0.3 Pyoiy +0.7) VP!

tp _
(1/TuP) VWP 4 Py VPP + (0.3 Pyo + 0.7) VPP’

(42)

where VWP, VP VPP are the respective fractions of water, neutral lipids and
phospholipids in plasma. Parameter values can be found in [13,27] for the species
rabbit, rat, mouse and human.

Willmann et al. model

In [17], Willmann etal. proposed an alternative mechanistic model for the calculation
of the tissue-plasma partition coefficient K'P. In contrast to the previous models
Willmann etal. use the membrane affinity to quantify binding to lipids. It is assumed
that the compound can dissolve in tissue water, bind to proteins (pr) and membrane
lipids (1). In distinction to the previous models, Willmann etal. consider the proteins
as a separate phase.

The model is based on the following approximations [17]: (i) Protein-unbound drug
partitioning:

Kot _ {PR/KD; plasma )

1075 MA; tissue

where PR denotes the concentration of albumin in the blood plasma, and Kp denotes
the dissociation constant for serum proteins. (ii) Lipids-unbound drug partitioning:

K™t = MA (44)

where MA denotes the membrane affinity. For ionizable compounds, the tissue protein-
unbound drug partitioning is corrected with the ionization constant pK, yielding

KPriut = 1073 (9.9 +0. 1) MA. (45)

1
1+ (8/pKa)'8
Sub-compartmentalized tissue distribution model

Based on the fundamental relation 13, the unbound fraction in tissue fu' is given by

1 . . . .
f_t — th.t + Kpr.thpr.t + MA - V].t. (46)
u
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Lumped steady state model

Exploiting Eq.21 and K"*P = K" . fuP we obtain the tissue-plasma partition coeffi-
cient

K ywit 4 K priuty/prit 1+ MA - Vl:t

- VWp - Kpriupyprp + MA . VIp : 47)

Parameter values can be found in [28].

Parameterization of the sub-compartmentalized tissue distribution model

We have demonstrated, how existing approaches to apriori predict tissue-(unbound)
plasma partition coefficients can be exploited to predict the unbound fractions in the
interstitial and cellular space. In our context, these values can readily be used to
parameterize the sub-compartment tissue model. This allows us to establish different
parameterization for different drug classes. Beyond fu' and fu®, the unbound fractions
in plasma and erythrocytes, as well as permeability-surface area products and the
different volumes of the sub-compartments are needed.

The unbound fraction in plasma fuP is directly determined by in vitro measurements,
while the unbound fraction in erythrocytes fu® can be derived from the blood-plasma
ratio B : P according to

1 B:P—(1—het) fn° 48)
fu¢ het - fuP fnP’

where hct denotes the hematocrit value. A detailed summary on red blood cell par-
titioning can be found in [20]. The unbound fractions can be used with Eq.7 to
parameterize the sub-compartment model. A permeability-surface area product P.S
is obviously not present in the lumped steady state models, so we have to adopt a
different approach. In the early stage of drug discovery, the permeability-surface area
product may well be chosen identically to a sufficiently large value in order to account
for a fast and instantaneous exchange. In this case our model mimics the dynamical
equilibrium (comparable to the partition coefficient models). However, it still allows
to directly access the concentrations in the different sub-compartments and to include
active transport processes. Once experimental data is available, it might be possible
to estimate the permeability-surface area product, cf. e.g, [18]. However, a generic
parameterization for a large class of drugs is not known.

Typically, tissue volume is regarded as extra-vascular space, comprising the intersti-
tial and the cellular space, while the organ space includes the vascular space in addition
to the interstitial and cellular space. Tissue volume data can be found in the literature,
seee.g.,[1,12,16,29]. In [18,Table A2] values for the vascular volume fractions V' V:°'¢
and for the interstitial volume fractions V°'¢ of diverse organs have been published
for rats and assumed to be identical for humans. Utilizing the hematocrit (hct) value,
we may thus compute all necessary volumes for the sub-compartmentalized tissue
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distribution model: V'8 = 1 — yVviorg v = yvorg., yt/ytorg  ye — het. VY,
VP = (1 —het) - VY, Vi — Vi:org . Vt/ Vt:org7 Ve = (1— yviorg _ Vi:org) . Vt/vt:org.

Extensions of the sub-compartmentalized tissue distribution model

The main advantage of the sub-compartmentalized tissue distribution model is the abi-
lity to extent and refine it. As a simple example, we consider the integration of binding
to a target B