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Abstract. A powerful new software concept to physiologically based
pharmacokinetic (PBPK) modelling of drug disposition is presented. It
links the inherent modular understanding in pharmacology with orthog-
onal design principles from software engineering. This concept allows for
flexible and user-friendly design of pharmacokinetic whole body models,
data analysis, hypotheses testing or extrapolation. The typical structure
of physiologically-based pharmacokinetic models is introduced. The re-
sulting requirements from a modelling and software engineering point
of view and its realizations in the software tool MEDICI-PK [9] are
described. Finally, an example in the context of drug-drug interaction
studies is given that demonstrates the advantage of defining a whole-
body pharmacokinetic model in terms of the underlying physiological
processes quite impressively: A system of 162 ODEs is automatically
compiled based on the specification of 7 local physiological processes
only.

1 Introduction

Pharmacokinetics is the study of the time course of drug and metabolite levels in
different fluids, tissues, and excreta of the body [12]. This includes the investiga-
tion and understanding of the processes of absorption, distribution, metabolism,
and excretion (ADME). The pharmacokinetic profile of a drug strongly influences
its delivery to biological targets, thereby affecting its efficacy and potential side
effects. Following studies in the late 1990s indicating that poor pharmacokinetics
and toxicity were important causes of costly late-stage failures in drug develop-
ment, it has been widely perceived that these areas need to be considered as early
as possible in the drug discovery process [1]. Today’s combinatorial chemistry
and high throughput screening methods enlarged the space of drug candidates
significantly, creating actual needs for in silico pharmacokinetic analysis to sup-
port the drug development pipeline. The pharmacokinetics of a compound are
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typically understood, analyzed and interpreted in the context of their underlying
ADME processes. However, there is no unique mathematical model for any of
these processes; usually a number of different models with different underlying
assumptions, parameterization and applicability are concurrent.

To efficiently support in silico modelling and simulation in pharmacokinetics,
we propose to inherit the inherent modular structure, which is based on the
physiological processes, to the software tool. We describe the concepts of modu-
larity and orthogonality as fundamental principles for the design of a virtual lab
in pharmacokinetics. The above mentioned design principles have recently been
realized successfully in the software tool MEDICI-PK, that is especially designed
to fit the needs in pharmacokinetic modelling. Our approach is illustrated by an
example from drug-drug interaction studies.

2 Mathematical Modelling in Physiologically Based
Pharmacokinetics (PBPK)

A physiologically based pharmacokinetic (PBPK) whole body model is a special
type of compartmental model, in which the compartments represent anatomi-
cal volumes, such as organs or tissues. The compartments are connected in an
anatomically meaningful way, to simulate drug exchange via the blood flow. The
conceptional representation of a 15 organ PBPK model is shown in Fig. 1. Each

Fig. 1. Organ structure of a physiologically based pharmacokinetic model

compartment is further subdivided into the four phases: erythrocytes, plasma,
interstitium and cellular space (see Fig. 1). Many physiological processes in phar-
macokinetics are accessible for a mechanistic description at this resolution. Typ-
ically, following processes are modelled:

– Convection of drug molecules by the blood flow
– Binding to macromolecules in plasma and interstitial space
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– Distribution into tissue
– Diffusion or active transport across the cellular membrane
– Metabolism or interaction with metabolic networks or signalling pathways etc.

There are many levels of mathematical description for a certain biological process
(e.g., each of the physiological processes stated in the above list). To give an ex-
ample, the process of protein binding (complex formation) between a compound
and some macromolecule can be explicitly modelled in terms of the correspond-
ing differential equations derived from the law of mass action. However, often
it is assumed that the binding process is fast in comparison to other processes
and therefore in dynamical equilibrium (quasi-stationarity). This results in some
algebraic equation, often still accounting for saturation effects of the binding
process. A further simplification finally results in a linear algebraic equation that
is not capable of accounting for saturation effects, however it may be directly
parameterized in terms of a frequently generated in vitro parameter.

Each mathematical model has its range of applicability and typically requires
different knowledge about the process and in particular different input para-
meters. In broad terms, a chosen model will be a compromise between detailed
mechanistic description and required ”quality” of the input parameters. At early
stages of drug discovery, frequently measured in vitro parameters are used to
parametrize early PBPK models. Either the parameter can directly be used
in the model, or relevant model parameters are estimated through mechanistic
equations [3,4,5] from the measured in vitro parameters. Typically, the knowl-
edge and the quality of parameters increases along the drug discovery and devel-
opment process so that adaptation of the model to the current knowledge and
parameter quality is possible (and should be aimed for) [10,11].

The characterization of the PBPK model already suggests a modular descrip-
tion of the whole body model, especially in drug discovery. In mathematical
terms, a PBPK model constitutes a set of differential/algebraic equations de-
scribing the underlying processes. The current status of software development
in pharmacokinetics is dominated by either a purely equation based approach—
contradicting user-friendliness—or implementing a static model—contradicting
flexibility [10]. Instead, the requirements on user-friendliness and flexibility can
be fulfilled by the use of sophisticated modular software concepts and structures,
as outlined in the next section.

3 Modular Software Design

To support the specification of a whole-body pharmacokinetic model, a vari-
ety of physiological processes (as mentioned above) and a corresponding collec-
tion of different mathematical models have to be regarded. In practice, identical
processes in different compartments will be described by identical mathematical
models. From a software engineering point of view it is important to encap-
sulate the mathematical descriptions into modular parts. These modular parts
(”models”)–collected in a model library–are defined only once and can be re-
used inside the whole PK model wherever suitable. This prevents redefinition
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and rewriting and ensures the even treatment of identical processes wherever
wanted. The models are specified in terms of concentrations and parameters,
but (a prerequisite for this approach) do not rely on any specific parameter val-
ues. This allows for the evaluation of identical mathematical models in different
contexts (by means of different parameter sets).

A given topology (like the 15 organs example) combined with a selection of
models from the library (one for each physiological process) builds a descrip-
tion of the PBPK model which is still independent of specific values. It may be
evaluated for any selection of parameter values. We call this description a ’full
body template’ (see Fig.2). The parameters to which the models refer can be
classified as (i) compound dependent, (ii) species/individual dependent, (iii) de-
pendent on the compound and species or (iv) independent (general parameters).
This classification suggests the introduction of four corresponding software ob-
jects, each building an orthogonal structure of its own, independent of the ’full
body template’.

For the full specification of a PBPK model, a ’full body template’ and values
of the required parameters given in the mentioned (i)-(iv) parameter objects
have finally to be linked (see Fig. 2) - this is realized by the ’simulation object’.

The models address the concentration of a compound by fixed terms (e.g.
”Comp1”, ”Comp2”). They are independent of an actual compound selection,

Fig. 2. Schematic illustration of the orthogonal approach to software supported phar-
macokinetic modelling
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which makes it necessary to assign the actual selection of compounds to these
expressions. Models which consider only one compound need no assignment,
since this is internally handled, however, multi-compound models (e.g. needed
in metabolism models for interactions between compounds) necessitate explicit
mapping of the terms addressing the different compound concentrations. For
instance, the simple metabolism model

V
d
dt

C(1) = k1C
(1) − k2C

(1)C(2)

V
d
dt

C(2) = −k1C
(1) + k2C

(1)C(2)

will be evaluated for two compounds A and B only if the mapping between com-
pounds (A, B) and concentration terms (C(1), C(2)) is performed, e.g., compound
A to C(1) and compound B to C(2). This has to be done inside the ’simulation
object’ where the ’full body template’ and the compound(s) are specified. As
soon as all missing mappings are defined, the PBPK model is completed.

When starting the simulation, the resulting differential equation system is au-
tomatically generated, including the assignment of all compound-specific para-
meter values and species-specific physiological parameter values to the respective
processes. An example from drug-drug interaction studies is given in the next
section that illustrates the modular and orthogonal concept and illuminates the
advantage of defining a whole-body PBPK model in terms of underlying physi-
ological processes quite impressively.

4 Examples

Some drugs are administered as so-called pro-drugs that are metabolized into
active compounds by liver enzymes. One example is Oseltamivir, better known
as Tamiflu [8]. Tamiflu is the main antiflu medicine recommended by the World
Health Organization (WHO) [2]. In anticipation of a flu pandemic, the WHO
suggests that countries should stockpile enough Tamiflu to allow the treatment
of at least a quarter of their population. At present time, however, the supplies
of Tamiflu are enough to cover about 2% of the world population only. Recently,
Hill et al. [7] highlighted a way to effectively double the supplies of Tamiflu:
When administered with a second drug, called probenicid, Tamiflu excretion into
the urine is stopped. As a result, only half of the normal doses of Tamiflu are
needed. This ”wartime tactic” could be used to double power of scarce resources
of Tamiflu in case of a flu pandemic [2].

Here, in silico modelling and simulation could help to better understand and
possibly further optimize the co-administration effects. Motivated by the above
example, we want to illustrate how the previously introduced software concepts
–realized in MEDICI-PK–can be used to efficiently model the phenomena of
pro-drug administration and drug-drug interaction. Our aim is to illustrate the
power of our orthogonal and modular approach by establishing complex phar-
macokinetic models. It is explicitly not our aim to reproduce experimental data;
this is work in progress.
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The starting point is the definition of the building blocks in our PBPK model.
This is done in terms of the relevant physiological processes like: (a) i.v. ab-
sorption, (b) linear protein binding, (c) passive diffusion, (d) tissue distribution
(according to [6]), (e) saturable metabolism, (f) renal excretion. Each of the
processes (modules) is defined in a ’model basis’ by a corresponding mathemat-
ical equation. For instance, the processes of saturable metabolism is defined by

vmeta =
V meta

max Cu

Kmeta
m + Cu

, (1)

with maximum reaction velocity V meta
max and Michaelis-Menten constant Kmeta

m .
The concentration of unbound drug is denoted by Cu . The process of excretion
is specified by

vexcr =
(

QGF +
V ren

max

Kren
m + Cu

)
(1 − Fre−abs.) · Cu (2)

The parameter V ren
max denotes the maximum velocity of the saturable active tubu-

lar excretion process with Michaelis-Menten constant Kren
m . QGF and Fre−abs. are

the glomerular filtration rate and the fraction, that is passively reabsorbed. The
renal excretion has been modelled as a function of three processes: (i) passive
glomerular filtration (efflux), (ii) active tubular secretion (efflux) and (iii) pas-
sive reabsorption. Metabolic clearance in the kidney has been neglected. In total,
seven local processes have been defined to model the whole body pharmacoki-
netics of the three compounds.

The overall PBPK model is then defined by the ’full body template’ that
links the local physiological process modules on the organ level. For efficiency,
it is possibe to define a generic organ structure, which is taken as a default
for the initialization of the entire list of organ models. Subsequent individual
modifications are possible in order to model organ specific processes, like e.g.,
excretion by the kidneys. Next, we specify the physiological parameters of the
considered species, in our case a 250 g weighting male rat. These values are later
needed to fill the model parameters. Finally, we specify the compound-specific
data. Motivated by the Tamiflu example, we consider three compounds named
A, B, and C; a pro-drug, an active metabolite and a competitive inhibitor for
the secretion (of compound B).

At this stage, the three constituents are completely independent. The PBPK
model is specified in terms of parameters, however, no actual numerical values
are assigned in the model. Only if we map the specific numerical values of the pa-
rameters (corresponding to the compound and the species of interest), we obtain
a fully specified and ready to simulate so-called ’simulation object’. The advan-
tage of this orthogonal specification and data management is a large flexibility.
The same PBPK model can be used for different species and compounds, while
the same species database can be used in studies of different models etc. We now
demonstrate how to user-friendly and efficiently set up a model for three com-
pounds interacting in a way motivated by the Tamiflu example in three steps. An
overview over the necessary modelling steps to be performed is given in Table 1.
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Fig. 3. Simulation results as concentration vs. time profiles in venous plasma for (I.)
independent pharmacokinetics (top left) and (II.) conversion of pro-drug A to B (top
right). The simulation results for (III.) competition for tubular excretion of compounds
B and C are shown in the middle and bottom panels. The middle left and right panels
shows the concentration vs. time profiles in the venous plasma and interstitial space
of the lung, while the bottom panels show the profiles in the cellular space of the liver
(bottom left) and kidney.

Independent pharmacokinetics. To start with, the pharmacokinetics of the
three compounds A, B and C are simulated independently. This is easily performed
by creating a ’simulation object’, which links the full body model, the species data
(rat) and the respective compound data. As a consequence, MEDICI-PK auto-
matically generates a set of model equations for each compound. In this example
we have identical models for the three compounds. The resulting pharmacokinetic
profiles are shown in Fig. 3 (top left panel) for an intravenous administration of 2
mg/(kg bodyweight) of each compound (modelling details in Table 1). Compounds
A, B and C show very different pharmacokinetic profiles. This is due to their dis-
tinctive distribution characteristics in the various tissues and due to their different
elimination characteristics.While compound C is eliminated in an almost constant
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fashion, compound Aand B are eliminated in an exponential fashion. Plasma levels
of compound B are substantially higher than plasma levels of compound A and C
respectively. This is because compound B is mainly distributed in the plasma, with
significantly lower concentrations in the interstitium and cellular space.

Table 1. Brief overview over the performed simulations

description interactions dosing

independent pharmacokinetics - A: 2[mg/kg body weight] i.v.
B: 2[mg/kg body weight] i.v.
C: 2[mg/kg body weight] i.v.

conversion of pro-drug A to A → B A: 2[mg/kg body weight] i.v.
active metabolite B C: 2[mg/kg body weight] i.v.
conversion of pro-drug A to B A → B↓� C A: 2[mg/kg body weight] i.v.
competition for active tubular C: 2[mg/kg body weight] i.v.
excretion between B and C

Conversion of pro-drug A to B. We next demonstrate how to link the phar-
macokinetics of compound A and B. In physiological terms, we want to model the
conversion of compound A into compound B in the liver (see Table 1). Given the
’full body template’ from the first simulation scenario, this requires only a single
change, namely the adaptation of the metabolism model chosen for compound
B in the liver. We define the so-called multi-compound metabolism model

vmeta = − V
(1)
maxC

(1)
u

K
(1)
m + C

(1)
u

+
V C2

maxC
(2)
u

K
(2)
m + C

(2)
u

and subsequently map B to C(1) and A to C(2) in the ’simulation object’. Assum-
ing no i.v. administration of compound B, the simulation results are shown in
Fig. 3 (top right panel) for intravenous administration of 2 mg/(kg body weight)
of compound A and C.

While the simulation of non-interacting compounds based on the same PBPK
model can be solved by successive simulation of a single compound at a time,
the consideration of (dynamic) interactions requires to establish a joint model
for the interacting compounds. In MEDICI-PK, this is automatically generated
exploiting the described software concept. This will become even more obvious
in the next case.

Competition for active tubular excretion. Finally, we want to include the
drug-drug interactions between compound B and C (modelling details in Ta-
ble 1). In physiological terms, compound C will compete with compound B for
active excretion. Given the ’full body template’ from the second simulation sce-
nario, this again requires only a single change. We modify eq. (2) to include the
competition by
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v
(1)
CLren

=

⎛
⎝QGF +

V
(1)
max

K
(1)
m (1 + C

(2)
u

K
(2)
m

) + C
(1)
u

⎞
⎠(

1 − Fre−abs.
(1)

)
· C(1)

u

v
(2)
CLren

=

⎛
⎝QGF +

V
(2)
max

K
(2)
m (1 + C

(1)
u

K
(1)
m

) + C
(2)
u

⎞
⎠(

1 − Fre−abs.
(2)

)
· C(2)

u

As with the case of Oseltamivir-Probenicid competitive inhibition, uni-directed
inhibition can be achieved by greatly diverging Km values (factor 104) for com-
pounds B and C. After mapping B to C(1) and C to C(2) in the ’simulation
object’, the simulation is performed; the results are shown in Fig. 3 (middle
and bottom panels) for intravenous administration of 2 mg/(kg body weight) of
compound A and C. This example nicely illustrates the phenomenon of extended
drug exposition of compound B (active metabolite) as a result of a drug-drug
interaction.

In our physiological context (Fig. 1), a total of 162 ordinary differential equa-
tions is necessary to simulate the pharmacokinetics of the three compounds, includ-
ing drug-drug interactions; – on the basis of the presented concepts, MEDICI-PK
generates these equations from seven user-defined local physiological models only!

5 Conclusion and Outlook

Considerable progress has been made in the development of in silico models to
predict and understand the pharmacokinetics of new compounds, in particular
in early drug discovery. As a result, modelling and simulation is possible prior to
any in vivo experiments, solely based on in vitro data. We present the principles
and concepts of a software design that efficiently allows to build up PBPK models
in terms of the underlying physiological processes, combining user-friendliness
and flexibility. These principles and concepts are the basis of the software tool
MEDICI-PK that has been used to illustrate our approach.

We believe that the combination of in vitro experiments and in silico mod-
eling has the potential to drastically increase the insight and knowledge about
relevant physiological and pharmacological processes in drug discovery. In antic-
ipation of modelling not only the distribution of the drug in the body, but also
its effect (disease modelling), one future challenge will be the combination of
pharmacokinetics and effect related metabolic networks or signalling pathways
for a better understanding of the disease dynamics. An example would be the
treatment-induced selective pressure on viral dynamics. The presented concepts,
realized in MEDICI-PK, are powerful and flexible enough to also support these
future tasks.
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