641 research outputs found
Neutrino-nucleus interaction rates at a low-energy beta-beam facility
We compute the neutrino detection rates to be expected at a low-energy
beta-beam facility. We consider various nuclei as neutrino detectors and
compare the case of a small versus large storage ring.Comment: 6 pages, 3 figure
Improved limits on nuebar emission from mu+ decay
We investigated mu+ decays at rest produced at the ISIS beam stop target.
Lepton flavor (LF) conservation has been tested by searching for \nueb via the
detection reaction p(\nueb,e+)n. No \nueb signal from LF violating mu+ decays
was identified. We extract upper limits of the branching ratio for the LF
violating decay mu+ -> e+ \nueb \nu compared to the Standard Model (SM) mu+ ->
e+ nue numub decay: BR < 0.9(1.7)x10^{-3} (90%CL) depending on the spectral
distribution of \nueb characterized by the Michel parameter rho=0.75 (0.0).
These results improve earlier limits by one order of magnitude and restrict
extensions of the SM in which \nueb emission from mu+ decay is allowed with
considerable strength. The decay \mupdeb as source for the \nueb signal
observed in the LSND experiment can be excluded.Comment: 10 pages, including 1 figure, 1 tabl
Neutrino suppression and extra dimensions: a minimal model
We study flavour neutrinos confined to our 4-dimensional world coupled to one
"bulk" state, i.e. a Kaluza-Klein tower. We discuss the spatial development of
the neutrino disappearance, the possibility of resurgence and the effective
flavour transitions induced in this mechanism. We show that even a simple model
can produce an energy-independent suppression at large distances, and relate
this to experimental data.Comment: 14 pages, 8 figures; the exclusion of sterile neutrinos by
SuperKamiokande is discussed; references adde
Shell-model calculations of neutrino scattering from 12C
Neutrino reaction cross-sections, , ,
-capture and photoabsorption rates on C are computed within a
large-basis shell-model framework, which included excitations up to
. When ground-state correlations are included with an open
-shell the predictions of the calculations are in reasonable agreement with
most of the experimental results for these reactions. Woods-Saxon radial wave
functions are used, with their asymptotic forms matched to the experimental
separation energies for bound states, and matched to a binding energy of 0.01
MeV for unbound states. For comparison purposes, some results are given for
harmonic oscillator radial functions. Closest agreement between theory and
experiment is achieved with unrestricted shell-model configurations and
Woods-Saxon radial functions. We obtain for the neutrino-absorption inclusive
cross sections: cm for the
decay-in-flight flux in agreement with the LSND datum of
cm; and cm for the decay-at-rest flux, less than the
experimental result of cm.Comment: 19 pages. ReVTeX. No figure
Muon-anti-neutrino <---> electron-anti-neutrino mixing: analysis of recent indications and implications for neutrino oscillation phenomenology
We reanalyze the recent data from the Liquid Scintillator Neutrino Detector
(LSND) experiment, that might indicate anti-nu_muanti-nu_e mixing. This
indication is not completely excluded by the negative results of established
accelerator and reactor neutrino oscillation searches. We quantify the region
of compatibility by means of a thorough statistical analysis of all the
available data, assuming both two-flavor and three-flavor neutrino
oscillations. The implications for various theoretical scenarios and for future
oscillation searches are studied. The relaxation of the LSND constraints under
different assumptions in the statistical analysis is also investigated.Comment: 17 pages (RevTeX) + 9 figures (Postscript) included with epsfig.st
Microscopic theories of neutrino-^{12}C reactions
In view of the recent experiments on neutrino oscillations performed by the
LSND and KARMEN collaborations as well as of future experiments, we present new
theoretical results of the flux averaged and
cross sections. The approaches used are
charge-exchange RPA, charge-exchange RPA among quasi-particles (QRPA) and the
Shell Model. With a large-scale shell model calculation the exclusive cross
sections are in nice agreement with the experimental values for both reactions.
The inclusive cross section for coming from the decay-in-flight of
is to be compared to the experimental value
of , while the one due to
coming from the decay-at-rest of is which
agrees within experimental error bars with the measured values. The shell model
prediction for the decay-in-flight neutrino cross section is reduced compared
to the RPA one. This is mainly due to the different kind of correlations taken
into account in the calculation of the spin modes and partially due to the
shell-model configuration basis which is not large enough, as we show using
arguments based on sum-rules.Comment: 17 pages, latex, 5 figure
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
- âŠ