34,233 research outputs found

    Analysis of a synthetic aperture radiating interferometer navigation satellite concept Interim technical report

    Get PDF
    Synthetic aperture interferometer navigation satellite concep

    The Universal Rotation Curve of Spiral Galaxies. II The Dark Matter Distribution out to the Virial Radius

    Get PDF
    In the current LambdaCDM cosmological scenario, N-body simulations provide us with a Universal mass profile, and consequently a Universal equilibrium circular velocity of the virialized objects, as galaxies. In this paper we obtain, by combining kinematical data of their inner regions with global observational properties, the Universal Rotation Curve (URC) of disk galaxies and the corresponding mass distribution out to their virial radius. This curve extends the results of Paper I, concerning the inner luminous regions of Sb-Im spirals, out to the edge of the galaxy halos.Comment: In press on MNRAS. 10 pages, 8 figures. The Mathematica code for the figures is available at: http://www.novicosmo.org/salucci.asp Corrected typo

    An Unsplit, Cell-Centered Godunov Method for Ideal MHD

    Full text link
    We present a second-order Godunov algorithm for multidimensional, ideal MHD. Our algorithm is based on the unsplit formulation of Colella (J. Comput. Phys. vol. 87, 1990), with all of the primary dependent variables centered at the same location. To properly represent the divergence-free condition of the magnetic fields, we apply a discrete projection to the intermediate values of the field at cell faces, and apply a filter to the primary dependent variables at the end of each time step. We test the method against a suite of linear and nonlinear tests to ascertain accuracy and stability of the scheme under a variety of conditions. The test suite includes rotated planar linear waves, MHD shock tube problems, low-beta flux tubes, and a magnetized rotor problem. For all of these cases, we observe that the algorithm is second-order accurate for smooth solutions, converges to the correct weak solution for problems involving shocks, and exhibits no evidence of instability or loss of accuracy due to the possible presence of non-solenoidal fields.Comment: 37 Pages, 9 Figures, submitted to Journal of Computational Physic

    Low energy dynamics of spinor condensates

    Full text link
    We present a derivation of the low energy Lagrangian governing the dynamics of the spin degrees of freedom in a spinor Bose condensate, for any phase in which the average magnetization vanishes. This includes all phases found within mean-field treatments except for the ferromagnet, for which the low energy dynamics has been discussed previously. The Lagrangian takes the form of a sigma model for the rotation matrix describing the local orientation of the spin state of the gas

    On Dimensional Degression in AdS(d)

    Full text link
    We analyze the pattern of fields in d+1 dimensional anti-de Sitter space in terms of those in d dimensional anti-de Sitter space. The procedure, which is neither dimensional reduction nor dimensional compactification, is called dimensional degression. The analysis is performed group-theoretically for all totally symmetric bosonic and fermionic representations of the anti-de Sitter algebra. The field-theoretical analysis is done for a massive scalar field in AdS(d+d′^\prime) and massless spin one-half, spin one, and spin two fields in AdS(d+1). The mass spectra of the resulting towers of fields in AdS(d) are found. For the scalar field case, the obtained results extend to the shadow sector those obtained by Metsaev in [1] by a different method.Comment: 30 page

    Immersive training for movement sequences: The use of 360° video technology to provide poomsae training in Taekwondo

    Get PDF
    Background: The use of video technology is an established method of training. As an extended video format, 360° videos expand the potential of conventional videos with immersive and interactive design possibilities and combine conventional video technology with immersive technologies in a resource-saving manner. In sports, 360° videos can be used as tactical training tools to support reflection and analysis and to illustrate movements. In particular, 360° videos can be used to create a recorded authentic learning environment to support observational, multi-perspective training. Approach: This paper presents the use of 360° video training for the observation and imitation of movement sequences in poomsae training in taekwondo (or kata training in karate), using the example of the Taegeuk II Jang poomsae. The successive four-step concept can not only be applied to poomsae training in Taekwondo, but can also be transferred to other predefined movement forms and choreographies. Purpose: By using playback media with different degrees of immersion, the movement sequence can be observed, imitated, and followed in successive steps to enable the feeling of participating in a digital training group. Conclusions: The possible applications of 360° video technology in sports are versatile and offer new, immersive possibilities for simple and accessible training design. Training processes that are predominantly done through observational and imitative learning can be accompanied or shifted to home training with the presented 360° video training concept. In particular, 360° videos are suitable for reflective and observational training due to the multiple perspectives provided by the 360° view, which remain to be evaluated

    Polaron Physics in Optical Lattices

    Get PDF
    We investigate the effects of a nearly uniform Bose-Einstein condensate (BEC) on the properties of immersed trapped impurity atoms. Using a weak-coupling expansion in the BEC-impurity interaction strength, we derive a model describing polarons, i.e., impurities dressed by a coherent state of Bogoliubov phonons, and apply it to ultracold bosonic atoms in an optical lattice. We show that, with increasing BEC temperature, the transport properties of the impurities change from coherent to diffusive. Furthermore, stable polaron clusters are formed via a phonon-mediated off-site attraction.Comment: 4 pages, 4 figure

    The R.I. Pimenov unified gravitation and electromagnetism field theory as semi-Riemannian geometry

    Full text link
    More then forty years ago R.I. Pimenov introduced a new geometry -- semi-Riemannian one -- as a set of geometrical objects consistent with a fibering pr:Mn→Mm. pr: M_n \to M_m. He suggested the heuristic principle according to which the physically different quantities (meter, second, coulomb etc.) are geometrically modelled as space coordinates that are not superposed by automorphisms. As there is only one type of coordinates in Riemannian geometry and only three types of coordinates in pseudo-Riemannian one, a multiple fibered semi-Riemannian geometry is the most appropriate one for the treatment of more then three different physical quantities as unified geometrical field theory. Semi-Euclidean geometry 3R54^{3}R_5^4 with 1-dimensional fiber x5x^5 and 4-dimensional Minkowski space-time as a base is naturally interpreted as classical electrodynamics. Semi-Riemannian geometry 3V54^{3}V_5^4 with the general relativity pseudo-Riemannian space-time 3V4,^{3}V^4, and 1-dimensional fiber x5,x^5, responsible for the electromagnetism, provides the unified field theory of gravitation and electromagnetism. Unlike Kaluza-Klein theories, where the 5-th coordinate appears in nondegenerate Riemannian or pseudo-Riemannian geometry, the theory based on semi-Riemannian geometry is free from defects of the former. In particular, scalar field does not arise. PACS: 04.50.Cd, 02.40.-k, 11.10.KkComment: 16 pages, 2 figures. Submited to Physics of Atomic Nucle

    Foundations of self-consistent particle-rotor models and of self-consistent cranking models

    Get PDF
    The Kerman-Klein formulation of the equations of motion for a nuclear shell model and its associated variational principle are reviewed briefly. It is then applied to the derivation of the self-consistent particle-rotor model and of the self-consistent cranking model, for both axially symmetric and triaxial nuclei. Two derivations of the particle-rotor model are given. One of these is of a form that lends itself to an expansion of the result in powers of the ratio of single-particle angular momentum to collective angular momentum, that is essentual to reach the cranking limit. The derivation also requires a distinct, angular-momentum violating, step. The structure of the result implies the possibility of tilted-axis cranking for the axial case and full three-dimensional cranking for the triaxial one. The final equations remain number conserving. In an appendix, the Kerman-Klein method is developed in more detail, and the outlines of several algorithms for obtaining solutions of the associated non-linear formalism are suggested.Comment: 29 page
    • …
    corecore