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This report  describes and analyzes a synthetgc aperture 

interferometer method of using s a t e l l i t e s  t o  provide navigating 

a i r c r a f t  and ships with angular posit ion information. 

transmit i n  the 1540 t o  1660 MHz aeronautical  mobile band a l r e a G  

allocated f o r  navigation s a t e l l i t e  use, and %he system is designed 

t o  keep the user's navigation equipment as 'simple as possible. 

The satellites 

A 

navigation satell i te experiment based on the synthetic aperture 

interferometer concept is  recommended both as a means o f  demonstrating 

the  concept and t o  learn more about propagation phenomena at these 

frequencies. 

I t ' i s  found tha t  the synthetic aperture interferometer 

navigation s a t e l l i t e  concept is a very d i f f i c u l t  ons t o  implement 

successfully i n  an operational system because o e need t o  know the  

motion of the s a t e l l i t e  and the  user with extremely high accuracy. 

Moreover, very high-accuracy frequency standards a r e  required both 

a t  the  s a t e l l i t e  and the user vehicle. 

a t t r ac t ive  because it offers the advantages of the already operational 

Neve%theless, the  concept is  

'Navy '  Navigation S a t e l l i t e  System, without requiring 

for continuous coverage or long periods of t i m e  f o r  

many s a t e l l i t e s  

a position f ix .  
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1.0 INTRODUCTION 

There is currently a 

wide navigat ion system capable 

need f o r  a general-purpose, world- 

of providing accurate posit ion f ixes ,  
-r 

continuously and automatically, under a11 weather conditions. !l%e 

system is most urgently needed f o r  the North Atlantic region, but 

must be expandable f o r  global coverage, and should not be overloaded 

by a large number of users. Any navigation system must be rel iable ,  

dependable, and provide position information i n  a form acceptable t o  

the user. 

investment required by the user for navigation equipment should be as 

smll as possible. 

System obsolescence potent ia l  should be low, and the  

Potential  users of a navigation system include commercial, 

private, sc ien t i f ic ,  and mili tary a i r c r a f t  and ships having a wide 

range of navigation requirements. The system should be capable of 

providing fully equipped users with position f ixes  having accuracies 

on the order of a ' n a u t i c a l  mile (1.85 km) or bet ter .  

requiring maximum navigation ac cy, navigation with less  expensive 

user equipment, (with conseque ade-offs i n  position-determining 

capabi l i ty  and accuracy) i s  h i  desirable. Oceanographic 

generally require the highest' accuracy, but usually can .aff o r  

take more time t o  determine t h e i r  positions. 

supersonic aircraft require rapid and frequent position f ixes  s 

For users not 

A t  t 

errors accumulate quickly at  I high t ravel ing speeds 
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I n  addition t o  these requirements, the  Ad Hoc Joint  

Navigation S a t e l l i t e  Committee has concluded tha t  an urgent need 

ex is t s  t o  provide North Atlantic,  air t r a f f i c  control lers  with 

adequate communications, and tha t  an independent means of determining 

a i r c r a f t  posit ion is desirable f o r  t r a f f i c  surveillance purposes. 

The Committee fur ther  recognized t h a t  a communications l i nk  could 

a l s o  provide addi t ional  functions such as the  relaying of meteorological 

information, warnings of excessive radiation f o r  high-altitude super- 

sonic transports,  and transmission of d i s t r e s s  messages e 

1 

It has become widely recognized that ear th  s a t e l l i t e s  a r e  

potent ia l ly  capable of meeting these requirements f o r  a global 

navigation and t r a f f i c  control system. Several studies have already 

considered various navigation s a t e l l i t e  concepts based on Doppler, 

range-range, range-difference, and angle-measurement techniques. The 

synthetic aperture radiating interferometer navigation s a t e l l i t e  

concept t o  be developed i n  the following sections of t h i s  report has 

not previously been reported upon i n  any great d e t a i l ,  

Section 2 introduces and analyzes the synthetic aperture 

radiating interferometer concept and Section 3 contains an error  

analysis.  

experiment based on the concept, and the last section summarizes the 

resul ts ,  implications and conclusions of t h i s  research. 

The fourth section recommends a navigation s a t e l l i t e  

' Final  Report of' the Ad Hoc Joint  Navigation S a t e l l i t e  Committee, 
m y  19%- 
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2.0 

2.1 

NAVIGATION SATELUTE CONCEPT ANALYSIS ' 

General Description 

' The synthetic aperture radiat ing s a t e l l i t e  interferometer 

concept u t i l i z e s  the motion of a s a t e l l i t e  t o  sweep out (i.e., 

"synthesize") an effect ive interferometer baseline. The s a t e l l i t e  

I s  placed i n  inclined-synchronous or subsynchronous orbi t  so that 

there  Ps s a t e l l i t e  motion with respect t o  the  user. 

user measures the change in  phase of a CW signal  radiated f romthe  

s a t e l l i t e  over a known interval  of time and uses t h i s  information t o  

determine h i s  angular position with respect t o  the interferometer 

The navigating 

baseline synthesized by the s a t e l l i t e .  The user 's  operation is 

en t i re ly  passive, i.e., the user need not t r a n s m i t  a s ignal  i n  order 

t o  navigate. During the measurement interval,  the  coordinates of 

the s a t e l l i t e  are calculated by ground reference s ta t ions,  and t h i s  

informtion is transmitted i n  real-time t o  the user by means of a 

modulated subcarrier radiated frcm the  s a t e l l i t e .  

which consti tutes a part of the user's equipment, determines the 

direct ion cosines and spacing of the effect ive sa te l l i t e  in t e  

e t e r  and then calculates the user's position with respect t o  t 

interferometer. 

A d i g i t a l  computer, 

The synthetic aperture radiating interferometer c 

analogous t o  the  integrated-Dopp method used 

the  N a v y  Navigation S a t e l l i t e  Syste he ,advantage 

wer s a t e l l i t e s  a r e  needed f o r  e 

shorter period of time is require 



- 4 -  

2.2 Signal Analysis 

Assume a navigation s a t e l l i t e  radiates  a continuous-wave 

(cw), s igna l  

s ( t )  = A, cos(cuot + y) 

where A, i s  the  amplitude of the  radiated ca i r i e r ,  

cu is the  ca r r i e r  frequency, and 

y 

0 

is some a rb i t r a ry  ca r r i e r  phase. 

The s igna l  and addi t ive noise received by the  navigating user is 

- n,(t) sin[cuot + y - @(t)] (2 1 

where A1 is the amplitude of the received signal,  

n (t) is the: in-phase component of the  noise, 

ns ( t )  is the quadrature component of the noise, and 
C 

@(t) is  the  propagation phase delay given by 

@(t) = 2s fi radians 
hO 

where r(t) is the distance from the s a t e l l i t e  to the navigating user, and 

h is the  wavelength of the  s igna l  radiated from the  s a t e l l i t e .  
0 



Figure 1 shows the geometry 

interferometer navigation s a t e l l i t e .  

from the sa t e l l i t e .  is 

of the synthetic aperture 

A t  t i m e  tl the s igna l  radiated 

s(tl) = A. COS(O 0 1 ,  t + y) (4 1 

while the  received signal-plus-noise is 

' where 

A t  a k t e r  time (tl + T), the s a t e l l i t e  w i l l  have moved a distance 

D(T) with respect t o  the earth, as shown i n  Fig. 1, and the s ignal  

radiated from the s a t e l l i t e  w i l l  be 

s(t l  + 7 )  = A o  cos[~,( t1  + 7 )  + y] (7) 

while the  received signal-plus-noise w i l l  be 

+ nc(tl + T )  cos[ao(tl + T )  + Y - fi(tl + T ) ]  

- ns(tl + T) sin[oo(tl + T )  + + - $(tl + T ) ]  
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where 

From the geametry of Fig. 1, the direct ion (0 )  of the  

navigating user with respect t o  the baseline synthesized by the 

s a t e l l i t e  is given by 

D(T)  s i n  0 = r(tl + T )  - r(t,) 

or, subst i tut ing (6) for r(t,) and (9) f o r  &(t, + T), 

Block diagrams of two possible types 

receivers a r e  given i n  FLg. 2. I n  both cases, 

receivers are used with coherent detectors and 

L 

of navigation 

superheterodyne 

narrowband post- 

detection integrating filters . 
is required, and t h i s  osc i l la tor  must be synchronous with the  s a t e l l i t e  

ca r r i e r  frequency W 

assuring osc i l l a to r  synchronization a re  the  subject of a l a t e r  section. 

The two receivers d i f f e r  i n  the  method of measurement. The receiver 

represented i n  Fig. 2(a) counts cycles and f rac t ions  of a cycle 

(i.e., phase) during an accurately known in te rva l  of time. 

t i m e  in te rva l  is obtained by dividing-down the  known reference 

osc i l l a to r  frequency and using the  resul t ing clock pulses t o  ‘control 

A high-stabi l i ty  reference osc i l l a to r  

The s t a b i l i t y  requirements and method of 
0. 

This 
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a gate t o  the cycle counter and phase readouts. 

in  Fig. 2(b), on the other hand, counts the period of one cycle of 

The receiver shown 

change i n  ca r r i e r  phase, i.e., the  value of 7 f o r  which 

I n  t h i s  case, (11) becomes 

= m  , s i n  8 

The function tD --&I, i.e., the r a t e  a t  which the s a t e l l i t e  synthesizes 

t h e  interferometer baseline, is calculated by a cent ra l  ground 

s ta t ion  and th i s  information is  part of t he  data sent t o  the user 

v i a  the s a t e l l i t e  i n  real-time. 

2.3 Extension of the Concept t o  Two Perpendicular Interferometer 
€?as el ines  

A single s a t e l l i t e  synthesizes a s ingle  interferometer 

which provides the navigating user with only a single angle, actual ly  

an angular - l ine  of position. A, second interferometer perpendicular 

t o  the first i s  needed t o  provide a second angular l ine  of posit ion 

t h a t  w i l l  in tersect  the first l i ne  a t  a point, thereby f ixing the 

use r s s  position. In  the case of navigating a i r c ra f t ,  it is assumed 

4 

that an al t imeter  is available t o  provide information on the 

a i r c r a f t ' s  a l t i tude .  

The second perpendicular interferometer baseline can be 

obtained by mesns of a second s a t e l l j t e  whose orb i t  is perpenili~iilnr 
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t o  the first. In practice, one s a t e l l i t e  could be i n  a c i rcu lar  

near-synchronous equatorial  orbit ,  while the other  s a t e l l i t e  would 

be i n  a c i rcu lar  near'synchronous polar orbft .  For continuous, 

world-wide coverage, approximately three equ'ally spaced s a t e l l i t e s  

I 

a re  required i n  each of the  two perpendicular o rb i t a l  planes. 

user navigation equipment is switched a l te rna te ly  between two 

perpendicular s a t e l l i t e s  (radiating on s l igh t ly  different  frequencies) 

i n  order t o  obtain a complete posit ion f ix .  

the user's loca l  reference osc i l la tor  t o  the d i f fe ren t  s a t e l l i t e  

The 

Methods of cal ibrat ing 

transmitt ing frequencies a r e  discussed l a t e r .  

2.4 Data Links, Processing, and Traff ic  Control Provisions 

Before the  user's position can be determined in  a geodetic 

frame of reference, it is necessary t h a t  the navigator be supplied 

information on the posit ion of each s a t e l l i t e  as a function of time. 

This may be accomplished by pulse-code modulating the  data onto a 

phase-modulated subcarrier of the s a t e l l i t e  transmitter.  The 

subcarrier is located within a few kHz of the  radiated CW ca r r i e r  

so that a single navigation receiver can receive the navigatton 

signals and the data  simulkaneously. 

given as a l t i tude ,  longitude and la t i tude,  each w i t h  a precision of 

0.1miflimeter. 

parameters need not be t h i s  good; instead, it is the differences i n  

these variables with time that must have t h i s  high degree of accuracy. 

The data a r e  transmitted from the s a t e l l i t e  a t  a one-second frame 

The posit ion coordinates a r e  

It should be noted that the accuracy of these three 

rate .  The received data a r e  entered into the user's computer which 
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4 

subtracts two adjacent frames t o  obtain the  clifference D(T),  where 

T = 1 second. 
4 

The magnitude of D ( 7 )  represents t h e  length of the 

interferometer baseline synthesized by the  s a t e l l i t e  and is needed 
4 

t o  solve (11) and (13). The components of D(T)  describe the 

direct ion of motion of t he  s a t e l l i t e  and hence the orientation of the 

interferometer. 
4 

The s a t e l l i t e  motion D ( r )  is solved by ground reference 

s ta t ions  whose positions a r e  already known. 

the  change in phase of the signal received f romthe  s a t e l l i t e .  

These s ta t ions  measure 

The 

phase-difference data  a r e  sent t o  a cent ra l  computation center which 

uses t h i s  information t o  solve backwards f o r  D(T) ,  be s t - f i t t i ng  the  

solution t o  the observed data. 

the  a l t i tude ,  longitude and la t i tude  of the  s a t e l l i t e ,  and this 

informatton i s  telemetered t o  the  user v ia  the  satell i te data-link, 

4 

-3 

D ( 7 )  is then expressed in  the form of 

as mentioned previously. 

adjustments of the s a t e l l i t e  transmitter frequency by ground command. 

The cent ra l  computation center also, provides 

It is envisioned tha t  two classes of users would n a v i s t e  

w i t h  t h i s  system. F i r s t  is the independent passive user which i s  

equipped with a d i g i t a l  computer f o r  perf orming its own calculations. 

Second is the t r a f f i c  control system user which does not have a 

computer and depends upon a central  t r a f f i c  control  center t o  perform 

the calculations. 

cen t ra l  t r a f f i c  control center has already been described i n  a previous 

report2 and is  straightforward. ' 

A method of  telemetering the  measurements t o  the 

P. I. Klein, Analysis of a Short-Easeline Radiating Interferometer 
Navigation S a t e l l i t e  Concept Incorporating Methods t o  Eliminate 
Systematic Navigation Ekror, Univ. of Fa., Moore School of E. E. 
Report No. 68-26, prepared f o r  the NASA Space Applications Programs 
Office under Grant NGR-39-010-087, lky 1968. 



3.0 NAVIGATION SATELLITE ERROR ANALYSIS 

Further analysis of the  synthetic aperture radiating 

interferometer navigation s a t e l l i t e  indicates that the primary. 

contributions t o  navigation error,  and t o  the f e a s i b i l i t y  of t he  

concept itself, are those due t o  equipment error,  &certaint ies  i n  

the  motion of both the  s a t e l l i t e  and the user, and propagation. 

3.1 EQuipment Error 

3.1.1 Carrier-to-Noise,Ratio Limitations on Accuracy 

Suppose that the  reference osc i l la tor  i n  the user 's  

receiver (Fig. 2) generates a s igna l  of the  form sin(wolt + 8 ) .  

This s igna l  is e f fec t ive ly  multiplied by the received s igna l  

t he  receiver phase detector t o  produce the  difference s ignal  output 

where A is 'the amplitude of the  signal portion of t h e  phase detector 2 

out put. 

If the  gate t o  the  phase counter readout is triggered by positive- 

going zero crossings of (14), then between t i m e  tl and tl + 7 
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- [(mot - u0) tl + $ - Y f @(tl) + l(t,)] = 2 ~ t  X radians (15) 

i.e., 

[(o0' - coo)' + m, + '1 - ml) + q ( t l  + 7) - o(tl)l 

= 2% X radians (16 1 

where q(t ,)  and q ( t l  f T )  a re  the quadrature components of the phase 

noise i n  the phase detector output a t  time tl and tl + 7,  

respectively, and X is the'number of cycles counted by the  cycle 

counter and phase readouts. These noise terms are obtained from 

the  second term of (14), i .e.,  the quadrature noise t e r m .  

it can be shown t h a t  the rms value of the phase noise is 

* 

From (14) 

where C i s  the  received s ignal  power and 

N is the noise power i n  the post-detection f i l t e r  noise 

bandwidth. 

-.I- 

I n  the  case of the receiver shown i n  Fig. 2(a), the f u l l  in tegra l  
n'mber of cycles is measured by the cycle counter readout, while the 
-rmaining f rac t ion  of a cycle is  measured by the  phase readout. I n  
I ile case of the receiver i n  Fig- 2(b), the value of 7 corresponding 
i r  a given in tegra l  value of X is displayed. 
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Assuming independence between the noise terms i n  (16), the  noise 

adds i n  the root-sum-square sense, and the expected value of the 

phase readout is 

Substi tuting (11) f o r  $(t, + 7 )  - $(t,), this becomes 

s i n  0 + - 2x 
0. 
h < x > = (fo' - f o ) T  + 

or solving f o r  s i n  8 ,  

[< x > - ( f o l  - f O ) T  - - 2x a] 
I n  t h i s  equation, 0 is  the  space angle from the interferometer t o  

the  user, and X is  the  number of cycles of phase shif'k measured by 

the  c:wle counter and phase readouts, 

represents an  e r ror  i n  the angle measurement due t b  an offset  i n  

frequency between the  user's reference osc i l la tor  frequency (fat) 
and the  s a t e l l i t e  transmitter frequency (f ). 

is  discussed l a t e r ,  The &m term represents the error  i n  the 

angle measurement due t o  l imitations i n  the Gamier-to-noise r a t i o  

of the received signal. 

D(T)/ho w i l l  increase t h e  sens i t iv i ty  of the cycle counter (reading 

X) t o  smll changes i n  angular posit ion 8. In  addition, (20) shorn. 

The (fo' - f O ) T  term 

This source of er ror  
0 

It is evident from (19) t h a t  increasing 
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t ha t  increasing D ( T ) / h o  reduces the e r ror  i n  angular posit ion caused 

by the  (fo* - f ' ) T  and & 'I,/$? terms. Figure 3 shows the relat ion-  

ship between angular posit ion measurement e r ror  and carrier-to-noise 

r a t io ,  f o r  several  values of D ( T ) / A ~ .  

0 

Table 1 lists the power budget f o r  a s a t e l l i t e  at  near- 

synchronous a l t i t ude  transmitting at a frequency of 1600 MHZ with 

a power of 50 watts and a gain of 18 dB (assuming a sa te l l i t e ' an tenna  

with a half-power beamwidth of 20 degrees fo r  f u l l  earth coverage). 

An omnidirectional (0-dB) user receiving antenna i s  assumed, and 

the  receiver effect ive noise temperature is assumed t o  be 1000 K, 

It i s  seen from Table 1 and Fig. 3 tha t  if a 1-Hz post-detection 

f i l t e r  bandwidth is used, the angular posit ion measurement e r ro r  due 

t o  the 43 .54B carrier-to-noise r a t i o  w i l l  range from 20 miles t o  

I 

0 

0,l mile proportionately as the baseline of the interferometer is 

increased from 1 wavelength t o  200 wavelengths. Thus it is desirable 

t o  use long synthesized interferometer baselines if high accuracy 

navigation is  t o  be achieved. 

3.1.2 Frequency S t a b i l i t y  Requirements and Calibration Methods 

The t e r m  (fol - f o ) T  i n  (20) represents an  e r ror  i n  the  

angle measurement due t o  bias errors  i n  the user's reference 

osc i l l a to r  frequency ( fol)  and the  s a t e l l i t e  transmitter frequency 

(f ). 
' 

in te rva l  of t i m e  7, is very nearly a l inear  function of 7,  the  

e r ror  (SO)  due t o  frequency of fse t  bias  e r ror  is  (from 20) 

Since D(T) ,  the  interferometer baseline synthesized i n  an 
0 
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Table 1 

P O W E 3  BUDGE2 FOR A SyNTmIC APERTURE RADIATING 
INTEIFEXIOMETER NAVIGATION SATELLITE SYSTEM 

S a t e l l i t e  transmitter power (50 watts) 1'7 dBW 

S a t e l l i t e  antenna; gain (PO0 beamwidth) 18 dB 

Free space loss  a t  1600 MHz, from 
synchronous a l t i t ude  t o  horizon -190 dB 

Navigation user receiving antenna gain 
(omnidirectional) 0 dB 

User receiver noise power density kT 
(T = 1000°K) -198.5 dBW/Hz 

Received carrier-to-noise power density 43.5 dB-Hz 
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where V i s  the speed at  which the  satel l i te  synthesizes t h e  in te r -  

ferometer baseline. 

Figure 4 shows the relationship between t h e  angular 

posit ion measurement e r ro r  and the  frequency offset ,  assuming a 

transmitt ing frequency of 1600 M F I Z .  

tha t  .the frequency accuracy an6 s t a b i l i t y  requirements a r e  qui te  

severe i f  posit ion measurement errors  a r e  t o  be kept below one 

naut ical  m i l e ,  

V w i l l  be on the order. of 100 wavelengths per second, and the 

It is evident from the curves 

If the s a t e l l i t e  is a t  near-syachronous a l t i t ude ,  

accuracy and s t a b i l i t y  of the  frequency stanGards at  both the 

s a t e l l i t e  and the user a re  required t o  be on the order of 1 X 10 

or bet te r ,  

required, unless the  frequency standards can be calibrated.  One 

method t o  accomplish such a cal ibrat ion is  t o  make addi t ional  

measurements of the usergs  angular posit ion with respect t o  the 

s a t e l l i t e .  This permits an oversolution f o r  posit ion from which 

-12 , 
Thus it appears t ha t  atomic frequency standards may be 

it i s  possible t o  solve f o r  any s ignif icant  frequency of fse t  i n  the 

u s e r a s  reference osc i l la tor .  This same method of solving f o r  bias  

i n  the  reference osc i l l a to r  is used i n  the Navy Navigation S a t e l l i t e  

System. An accurate knowledge of the  user's velocity is required 

before the frequency of fse t  can be computed, 

Sat e llit e 

already been flown. 

s a t e l l i t e  employs a 

accurate t o  3 p a r t s  

osc i l la tors  having suf f ic ien t  accuracy bave 

The U. S ,  Naval Research Laboratory's TIMATION 

special  c r y s t a l  o sc i l l a to r  reported t o  be 

i n  LOUe Adjustments t o  t h e  satellite osc i l l a to r  
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frequency can be performed upon ground comrnand through the use of 

ground reference s ta t ions  at known locations on the earth. 

Observations by these s ta t ions can be used t o  solve backwards for 

t he  frequency of the  s a t e l l i t e  transmitter,  so  t h a t  the satell i te 

osc i l l a to r  frequency can be corrected accordingly. Atomic clocks 

having frequency s t a b i l i t i e s  on the order of p a r t s  i n  loz a re  

avai lable  commercially, and s t a b i l i t i e s  of parts in  10l3 t o  10 14 

a re  available from atomic hydrogen masers,3 These devices have not 

yet flown i n  spacecx+aft, however e 

3.2 Ekror Due to Uncertainties i n  User, S a t e l l i t e  and S a t e l l i t e  
Antenna Motion 

The measurements of phase difference made by the  navigating 

user corresponds to changes i n  the  path length between t h e  s a t e l l i t e  

and the  user, and this irxf'ormation locates the  user 's  angular 

posit ion with respect t o  the s a t e l l i t e .  

change SG(7)  i s  actual ly  made up of three component vectors: 

The t o t a l  path-length 

,(23 1 4 

where &(T)  = r(t f 7 )  - $(t) 
4 

D(T)  i s  t h e  o rb i t a l  velocity vector of the  s a t e l l i t e ,  

U ( T )  is the  velocity vector of the user, and 

q(7) is a veloci ty  vector corresponding t o  motion of the 

4 

-4 

satellit'e antenna phase center about the center of the 
_ _  

A. 0. McCoubrey, "A Survey of Atomic Frequency Standards,'' Proc. 
of t he  IEEE, Vol. 54, pp. 116-135, February 1966. 
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s a t e l l i t e  e 

--9 

The D(T)  component is desired, while the :(T) and <(T) components 

represent errors due t o  uncertainties i n  the  motion of the  user and 

the s a t e l l i t e  

antenna phase 

corresponding 

antenna. If Z is the amount of motion of the s a t e l l i t e  

center about the center of the  s a t e l l i t e ,  then the  

phase difference e r ror  i s  

6$i = - 2'z radians x. 

and the angular position e r ror  is 

(25 1 z 
D 

6# = - radians 68 = - 2'D 

Table 2 shows the  expected angular position error  for several  values 

of antenna motion ( Z )  and synthesized baseline lengths (D).  

evident from the Table tha t  very constant a t t i t u d e  control is 

It is 

required a t  t h e  s a t e l l i t e  i n  order t o  l i m i t  motion of the s a t e l l i t e  

antenna phase center about t he  center of the  s a t e l l i t e ,  

the f a s t e r  t he  s a t e l l i t e  sweeps out the in4erferometer baseline, t h e  

smaller w i l l  be the  error  f o r  a given value of antenna motion. 

I n  addition, 

The e f fec ts  of user motion can be looked upon i n  much 

the  same way, i.e., unknown motion of the user antenna can cause 

errors  i n  angular position by the  same alirounts as those indicated i n  

Table 2. 

wavelengths swept out by the s a t e l l i t e  is  desi&ed t o  be much larger  

than t h e  number of wavelengths swept out by the  user, the system 

I n  the  case of,,the moving user, unless the number of 
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Table 2 

ANGULAR POSITION ERROR DUE TO MOTIOW OF THE SATELLITE 
A.NTENNA. PHASE CENTER ABOUT THE CENTER OF THE SATEWTE 

Note 1 Note 2 Note 3 

66 i n  microradians , -  Z i n  millimeters - D i n  meters - 5X i n  n miles - 
1 
0.5 
0.2 
0.1 
0.05 
0.02 
0.01 

10 
5 
2 
1 
0.5 
0.2 
0.1 

100 
50 
20 * 

10 
5 
2 
1 

Note Z is the amount of motion of the satellite antenna phase 
center about t he  center of the  satellite. 

D is the length of t he  synthesized interferometer baseline. 

6 X . i ~  posit ion e r ror  a t  t he  subsa te l l i t e  point f rm a near- 
synchronous s a t e l l i t e .  
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would actual ly  be a ground-based interferometer 

swept out by t h e  user) ra ther  than a satell i te-based interferometer. 

(wit'h t he  baseline 

3.3 Propagation Error 

The ef fec ts  of ionospheric refract ion and dispersion and 

tropospheric phase fluctuations have already 'been analyzed i n  a 

previous report, t he  r e su l t s  of which can be expected t o  apply 4 

here. 

previous report. 

of error; however, multipath effects  can be reduced considerably 

through t h e  use of narrowband f i l t e r i n g  which tends t o  average out 

multipath phase error.5 

The ef fec ts  of multipath have a l s o  been analyzed i n  the  

k l t i p a t h  is found t o  be a very s ignif icant  source 

The ef fec ts  of multipath can a l s o  be 

reduced through the use of spread spectrum signals a t  the  satell i te 

i n  order t o  achieve ensemble averaging of the multipath error.  6 

Klein, Did,  pp. 75-78. 

Ibid, pp. 78-84. 

"An Angle-Measurement Navigation S a t e l l i t e  Concepts Study, " 
(Phase 11) Proposal submitted t o  the NASA Space Applications 
Programs Office by t h e  University of Pennsylvania, December 1968, 
PP. 32-34. 
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4.0 RECOMPIENDATION OF A NAVIGATION SATELLITE EXPERIMENT 

The synthetic aperture interferometer satellite concept 

i s  one that can be evaluated readily by means of a satell i te I 

experiment. 

valuable; 

There are several  reasons why such an experiment is 

1) A synthetic aperture interferometer is  the easiest 

method of obtaining a satellite interferometer. Other in te r f  erom- 

eter concepts which require at  least two coherent radiat ing sources 

separated i n  space, a r e  much more d i f f i c u l t  t o  r ea l i ze  with s a t e l l i t e s ,  

2) Specialized s a t e l l i t e s  a r e  not necessarily needed f o r  

a synthetic aperture interferometer s a t e l l i t e  experiment. 

or planned s a t e l l i t e  that contains a high frequency-stability CW trans- 

An exis t ing 

m i t t e r  can be used f o r  t he  experiment. TIWTION or N a v y  Navigation 

S a t e l l i t e s  might possibly be used t o  demonstrate t he  concFpt. 

3)  A synthetic, aperture interferometer satell i te can 

provide a large amount of much-needed data on propagation of 

s a t e l l i t e  signals. 

s a t e l l i t e  and a coherent reference at  t h e  user receiver provides 

The use  of a s tab le  s igna l  transmitted by a 

a very sensi t ive measurement of multipath and other spat ia l ly-  

sensi t ive propagation character is t ics ,  

Several of the problems' associated w i t h '  the  synthetic 

"aperture concept can be eliminated through the' use of a stat ionary 
I 

user s t a t ion  w i t h  the s a t e l l i t e .  A stat ionary us 

uncertainty i.n velocity, and hence a potential 's0 

M e d i a t e l y  eliminated. I n  addition, the  e f fec ts  of multipath 
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propagation can be assessed by comparing r e su l t s  from a high-gain 

user antenna w i t h  those obtained from low-gain antennas. 

direct ional  character is t ics  of the high-gain antenna can be used 

t o  i so la te  and measure the properties of the d i rec t  and reflected 

m u l t i p t h  s ignal  components a A medium or low-altitude s a t e l l i t e  

orb i t  can be used for the  experiment i n  order t o  great ly  reduce the  

frequency s t a b i l i t y  requirements of t h e  s a t e l l i t e  o sc i l l a to r  and 

the  user reference osc i l la tor ,  and at the  same time reduce errors  

due t o  uncertainties i n  user velocity. 

The 
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5.0 SUMMABY AND CONCLUSIONS 

This report  has introduced a concept of using the  motion 

of a non-synchronous sa$e l l i t e  to 'form the  baseline of an inter-  

ferometer. The interferometer is capable of providing a passive 

navigating user with angular posit ion information, I n  effect ,  the 

length of the measurement interval determines t h e  length of t h e  

synthetic aperture baseline. However, it is found that the longer 

the  measurement interval,  the  more s t r ingent  are the frequency 

s t a b i l i t y  requirements of the  satellite and user reference 

osci l la tors ,  and the  need t o  know t h e  exact amount of motion 

t h e  satell i te 'and t h e  user. 

of 

It can be concluded from the error  analysis of Section 3 

t h a t  lower orb i t  satellit es a r e  more desirable than near-synchronous 

ones for the  synthetic aperture interferometer because of the 

shorter  period of time required t o  synthesize a given,interferometer 

baseline length. A lower orb i t  s a t e l l i t e  relaxes the reference 

osc i l l a to r  frequency s t a b i l i t y  requirements and a t  the  same t i m e  

introduces less e r ro r  from uncertainty i n  the  motion of t he  user. 

While the  synthetic aperture interferometer concept appears 

t o  be a,questionable technique t o  implement as an operational 

navigation s a t e l l i t e  system, the concept should provide the basis 

for an invaluable interferometer experiment. Such an experiment 

was discussed i n  the  previous section. 
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It is found that the synthetic aperture interferometer navigation satellite 
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