1,359 research outputs found

    Lifshitz tails estimate for the density of states of the Anderson model

    Get PDF
    We prove an upper bound for the (differentiated) density of states of the Anderson model at the bottom of the spectrum. The density of states is shown to exhibit the same Lifshitz tails upper bound as the integrated density of states

    Comparison of simulated and reconstructed variations in East African hydroclimate over the last millennium

    Get PDF
    The multi-decadal to centennial hydroclimate changes in East Africa over the last millennium are studied by comparing the results of forced transient simulations by six general circulation models (GCMs) with published hydroclimate reconstructions from four lakes: Challa and Naivasha in equatorial East Africa, and Masoko and Malawi in southeastern inter-tropical Africa. All GCMs simulate fairly well the unimodal seasonal cycle of precipitation in the Masoko-Malawi region, while the bimodal seasonal cycle characterizing the Challa-Naivasha region is generally less well captured by most models. Model results and lake-based hydroclimate reconstructions display very different temporal patterns over the last millennium. Additionally, there is no common signal among the model time series, at least until 1850. This suggests that simulated hydroclimate fluctuations are mostly driven by internal variability rather than by common external forcing. After 1850, half of the models simulate a relatively clear response to forcing, but this response is different between the models. Overall, the link between precipitation and tropical sea surface temperatures (SSTs) over the pre-industrial portion of the last millennium is stronger and more robust for the Challa-Naivasha region than for theMasoko-Malawi region. At the inter-annual timescale, last-millennium Challa-Naivasha precipitation is positively (negatively) correlated with western (eastern) Indian Ocean SST, while the influence of the Pacific Ocean appears weak and unclear. Although most often not significant, the same pattern of correlations between East African rainfall and the Indian Ocean SST is still visible when using the last-millennium time series smoothed to highlight centennial variability, but only in fixed-forcing simulations. This means that, at the centennial timescale, the effect of (natural) climate forcing can mask the imprint of internal climate variability in large-scale teleconnections

    Lutte contre les simulies anthropophiles nuisant au développement socio-économique en Polynésie française

    Get PDF

    Application of classical models of chirality to surface second harmonic generation

    No full text
    International audienceTwo classical models (Kuhn and Kauzmann) are extended to calculate the second-order nonlinear response of an isotropic layer of chiral molecules. Calculation of the various nonlinear susceptibilities (electric dipolar, magnetic dipolar, and electric quadrupolar) is performed and applied to the derivation of the second harmonic field radiated by the molecules. It is shown that the two models give strikingly different results about the origin of the chiral response in such experiments. Previously published results are analyzed in view of this calculation which allows to understand the different interpretations proposed. This calculation emphasizes the interest of surface second harmonic generation to access information about the microscopic origin of optical activity in chiral molecules. © 2001 American Institute of Physics
    corecore