437 research outputs found

    Patient-Specific Virtual Insertion of Electrode Array for Electrical Simulations of Cochlear Implants

    Get PDF
    International audienceSensorineural hearing loss is becoming one the most common reasons of disability. Worldwide 278 million people (around 25% of people above 45 years) suffer from moderate to several hearing disorders. Cochlear implantation (CI) enables to convert sound to an electrical signal that directly stimulates the auditory nerves via the electrode array surgically placed. However, this technique is intrinsically patient-dependent and its range of outcomes is very broad. A major source of outcome variability resides in the electrode array insertion. It has been reported to be one of the most important steps in cochlear implant surgery. In this context, we propose a method for patient-specific virtual electrode insertion further used into a finite element electrical simulation, and consequently improving the planning of the surgical implantation. The anatomical parameters involved in the electrode insertion such as the curvature and the number of turns of the cochlea, make virtual insertion highly challenging. Moreover, the influence of the insertion parameters and the use of different manufactured electrode arrays increase the range of scenarios to be considered for the implantation of a given patient. To this end, the method we propose is fast, easily parameterizable and applicable to a wide range of anatomies and insertion configurations. Our method is novel for targeting automatic virtual electrode insertion. Also, it combines high-resolution imaging techniques and clinical data to be further used into a finite element study and predict implantation outcomes in humans

    Divergent T-cell receptor recognition modes of a HLA-I restricted extended tumour-associated peptide

    Get PDF
    Human leukocyte antigen (HLA)-I molecules generally bind short peptides (8-10 amino acids), although extended HLA-I restricted peptides (>10 amino acids) can be presented to T cells. However, the function of such extended HLA-I epitopes in tumour immunity, and how they would be recognised by T-cell receptors (TCR) remains unclear. Here we show that the structures of two distinct TCRs (TRAV4+TRAJ21+-TRBV28+TRBJ2-3+ and TRAV4 + TRAJ8+-TRBV9+TRBJ2-1+), originating from a polyclonal T-cell repertoire, bind to HLA-B*07:02, presenting a 13-amino-acid-long tumour-associated peptide, NY-ESO-160-72. Comparison of the structures reveals that the two TCRs differentially binds NY-ESO-160-72-HLA-B*07:02 complex, and induces differing extent of conformational change of the NY-ESO-160-72 epitope. Accordingly, polyclonal TCR usage towards an extended HLA-I restricted tumour epitope translates to differing TCR recognition modes, whereby extensive flexibility at the TCR-pHLA-I interface engenders recognition

    Automatic Generation of a Computational Model for Monopolar Stimulation of Cochlear Implants

    Get PDF
    International audienceCochlear implants have the potential to significantly improve severe sensorineural hearing loss. However, the outcome of this technique is highly variable and depends on patient-specific factors. We previously proposed a method for patient-specific electrical simulation after CI, which can assist in surgical planning of the CI and determination of the electrical stimulation pattern. However, the virtual implant placement and mesh generation were carried out manually and the process was not easily applied automatically for further cochlear anatomies. Moreover, in order to optimize the implant designs, it is important to develop a way to stimulate the results of the implantation in a population of virtual patients. In this work we propose an automatic framework for patient-specific electrical simulation in CI surgery. To the best of our knowledge, this is the first method proposed for patient-specific generation of hearing models which combines high-resolution imaging techniques, clinical CT data and virtual electrode insertion. Furthermore, we show that it is possible to use the computational models of virtual patients to simulate the results of the electrical activation of the implant in the cochlea and surrounding bone. This is an important step because it allows us to advance towards a complete surgical planning and implant optimization procedure

    Review of the mathematical foundations of data fusion techniques in surface metrology

    Get PDF
    The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions in the fusion of surface metrology data are raised and potential fusion algorithms are discussed

    Coalescent-based genome analyses resolve the early branches of the euarchontoglires

    Get PDF
    Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia) because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides) from all orders except Dermoptera (flying lemurs). Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods

    The Shaping of T Cell Receptor Recognition by Self-Tolerance

    Get PDF
    SummaryDuring selection of the T cell repertoire, the immune system navigates the subtle distinction between self-restriction and self-tolerance, yet how this is achieved is unclear. Here we describe how self-tolerance toward a trans-HLA (human leukocyte antigen) allotype shapes T cell receptor (TCR) recognition of an Epstein-Barr virus (EBV) determinant (FLRGRAYGL). The recognition of HLA-B8-FLRGRAYGL by two archetypal TCRs was compared. One was a publicly selected TCR, LC13, that is alloreactive with HLA-B44; the other, CF34, lacks HLA-B44 reactivity because it arises when HLA-B44 is coinherited in trans with HLA-B8. Whereas the alloreactive LC13 TCR docked at the C terminus of HLA-B8-FLRGRAYGL, the CF34 TCR docked at the N terminus of HLA-B8-FLRGRAYGL, which coincided with a polymorphic region between HLA-B8 and HLA-B44. The markedly contrasting footprints of the LC13 and CF34 TCRs provided a portrait of how self-tolerance shapes the specificity of TCRs selected into the immune repertoire

    Recognition of vitamin B metabolites by mucosal-associated invariant T cells

    Get PDF
    The mucosal-associated invariant T-cell antigen receptor (MAIT TCR) recognizes MR1 presenting vitamin B metabolites. Here we describe the structures of a human MAIT TCR in complex with human MR1 presenting a non-stimulatory ligand derived from folic acid and an agonist ligand derived from a riboflavin metabolite. For both vitamin B antigens, the MAIT TCR docks in a conserved manner above MR1, thus acting as an innate-like pattern recognition receptor. The invariant MAIT TCR a-chain usage is attributable to MR1-mediated interactions that prise open the MR1 cleft to allow contact with the vitamin B metabolite. Although the non-stimulatory antigen does not contact the MAIT TCR, the stimulatory antigen does. This results in a higher affinity of the MAIT TCR for a stimulatory antigen in comparison with a non-stimulatory antigen. We formally demonstrate a structural basis for MAIT TCR recognition of vitamin B metabolites, while illuminating how TCRs recognize microbial metabolic signatures

    Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition

    Get PDF
    Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell–mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR–HLA-B*4405EENLLDFVRF complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes

    A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition

    Get PDF
    Little is known regarding the basis for selection of the semi-invariant αβ T cell receptor (TCR) expressed by natural killer T (NKT) cells or how this mediates recognition of CD1d–glycolipid complexes. We have determined the structures of two human NKT TCRs that differ in their CDR3β composition and length. Both TCRs contain a conserved, positively charged pocket at the ligand interface that is lined by residues from the invariant TCR α- and semi-invariant β-chains. The cavity is centrally located and ideally suited to interact with the exposed glycosyl head group of glycolipid antigens. Sequences common to mouse and human invariant NKT TCRs reveal a contiguous conserved “hot spot” that provides a basis for the reactivity of NKT cells across species. Structural and functional data suggest that the CDR3β loop provides a plasticity mechanism that accommodates recognition of a variety of glycolipid antigens presented by CD1d. We propose a model of NKT TCR–CD1d–glycolipid interaction in which the invariant CDR3α loop is predicted to play a major role in determining the inherent bias toward CD1d. The findings define a structural basis for the selection of the semi-invariant αβ TCR and the unique antigen specificity of NKT cells
    corecore