76 research outputs found

    Fabrication of ultrahigh-density nanowires by electrochemical nanolithography

    Get PDF
    An approach has been developed to produce silver nanoparticles (AgNPs) rapidly on semiconductor wafers using electrochemical deposition. The closely packed AgNPs have a density of up to 1.4 × 1011 cm-2 with good size uniformity. AgNPs retain their shape and position on the substrate when used as nanomasks for producing ultrahigh-density vertical nanowire arrays with controllable size, making it a one-step nanolithography technique. We demonstrate this method on Si/SiGe multilayer superlattices using electrochemical nanopatterning and plasma etching to obtain high-density Si/SiGe multilayer superlattice nanowires

    Influence of surface properties on the electrical conductivity of silicon nanomembranes

    Get PDF
    Because of the large surface-to-volume ratio, the conductivity of semiconductor nanostructures is very sensitive to surface chemical and structural conditions. Two surface modifications, vacuum hydrogenation (VH) and hydrofluoric acid (HF) cleaning, of silicon nanomembranes (SiNMs) that nominally have the same effect, the hydrogen termination of the surface, are compared. The sheet resistance of the SiNMs, measured by the van der Pauw method, shows that HF etching produces at least an order of magnitude larger drop in sheet resistance than that caused by VH treatment, relative to the very high sheet resistance of samples terminated with native oxide. Re-oxidation rates after these treatments also differ. X-ray photoelectron spectroscopy measurements are consistent with the electrical-conductivity results. We pinpoint the likely cause of the differences

    Environmental and Occupational Health Response to SARS, Taiwan, 2003

    Get PDF
    Environmental and Occupational Health Industrial hygiene emergency response to SARS in Taiwan

    XUV Fluorescence Detection of Laser-Cooled Stored Relativistic Ions

    Get PDF
    An improved moveable in vacuo XUV fluorescence detection system was employed for the laser cooling of bunched relativistic ( β = 0.47) carbon ions at the Experimental Storage Ring (ESR) of GSI Helmholtzzentrum Darmstadt, Germany. Strongly Doppler boosted XUV fluorescence (∼90 nm) was emitted from the ions in a forward light cone after laser excitation of the 2s–2p transition (∼155 nm) by a new tunable pulsed UV laser system (257 nm). It was shown that the detected fluorescence strongly depends on the position of the detector around the bunched ion beam and on the delay (∼ns) between the ion bunches and the laser pulses. In addition, the fluorescence information could be directly combined with the revolution frequencies of the ions (and their longitudinal momentum spread), which were recorded using the Schottky resonator at the ESR. These fluorescence detection features are required for future laser cooling experiments at highly relativistic energies (up to γ ∼ 13) and high intensities (up to 10 11 particles) of ion beams in the new heavy ion synchrotron SIS100 at FAIR

    What does inflation really predict?

    Full text link
    If the inflaton potential has multiple minima, as may be expected in, e.g., the string theory "landscape", inflation predicts a probability distribution for the cosmological parameters describing spatial curvature (Omega_tot), dark energy (rho_Lambda, w, etc.), the primordial density fluctuations (Omega_tot, dark energy (rho_Lambda, w, etc.). We compute this multivariate probability distribution for various classes of single-field slow-roll models, exploring its dependence on the characteristic inflationary energy scales, the shape of the potential V and and the choice of measure underlying the calculation. We find that unless the characteristic scale Delta-phi on which V varies happens to be near the Planck scale, the only aspect of V that matters observationally is the statistical distribution of its peaks and troughs. For all energy scales and plausible measures considered, we obtain the predictions Omega_tot ~ 1+-0.00001, w=-1 and rho_Lambda in the observed ballpark but uncomfortably high. The high energy limit predicts n_s ~ 0.96, dn_s/dlnk ~ -0.0006, r ~ 0.15 and n_t ~ -0.02, consistent with observational data and indistinguishable from eternal phi^2-inflation. The low-energy limit predicts 5 parameters but prefers larger Q and redder n_s than observed. We discuss the coolness problem, the smoothness problem and the pothole paradox, which severely limit the viable class of models and measures. Our findings bode well for detecting an inflationary gravitational wave signature with future CMB polarization experiments, with the arguably best-motivated single-field models favoring the detectable level r ~ 0.03. (Abridged)Comment: Replaced to match accepted JCAP version. Improved discussion, references. 42 pages, 17 fig

    Three Pseudomonas putida FNR Family Proteins with Different Sensitivities to O-2

    Get PDF
    The Escherichia coli fumarate-nitrate reduction regulator (FNR) protein is the paradigm for bacterial O2-sensing transcription factors. However, unlike E. coli, some bacterial species possess multiple FNR proteins that presumably have evolved to fulfill distinct roles. Here, three FNR proteins (ANR, PP_3233, and PP_3287) from a single bacterial species, Pseudomonas putida KT2440, have been analyzed. Under anaerobic conditions, all three proteins had spectral properties resembling those of [4Fe-4S] proteins. The reactivity of the ANR [4Fe-4S] cluster with O2 was similar to that of E. coli FNR, and during conversion to the apo-protein, via a [2Fe-2S] intermediate, cluster sulfur was retained. Like ANR, reconstituted PP_3233 and PP_3287 were converted to [2Fe-2S] forms when exposed to O2, but their [4Fe-4S] clusters reacted more slowly. Transcription from an FNR-dependent promoter with a consensus FNR-binding site in P. putida and E. coli strains expressing only one FNR protein was consistent with the in vitro responses to O2. Taken together, the experimental results suggest that the local environments of the iron-sulfur clusters in the different P. putida FNR proteins influence their reactivity with O2, such that ANR resembles E. coli FNR and is highly responsive to low concentrations of O2, whereas PP_3233 and PP_3287 have evolved to be less sensitive to O2

    Behavioral genetics and taste

    Get PDF
    This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste
    corecore