85 research outputs found

    Effects Of D-norgestrel On Lipid Metabolism In The Rat

    Get PDF
    This project was aimed to examine the effects of the progestin d-norgestrel (d-Ng) on lipid and lipoprotein metabolism and elucidate its mechanism of action using the rat as the experimental model.;d-Ng fed to female rats (18 days) in conventional doses, significantly lowered the plasma total and very low density lipoprotein (VLDL)-triglycerides. In contrast, the plasma total and low density lipoprotein (LDL)-cholesterol rose significantly. The triglyceride synthesis was studied using isolated rat hepatocytes. d-Ng (0.1mM), in the presence of 0.1% dimethylsulfoxide concentration of the medium, significantly inhibited the incorporation of both 9,10-(\u273)H palmitate and U-(\u2714)C glycerol into triglycerides synthesized and triglycerides released by the hepatocytes. The inhibition of triglyceride synthesis by d-Ng was dose-dependent.;Further studies of the effect of d-Ng on the rate limiting enzymes of triglyceride synthesis showed a significant reduction in the specific activity of hepatic glycerol phosphate acyltransferase (GPAT) and phosphatidic acid aqueous dependent phosphatidic acid phosphatase (PAPase) specifically in the microsomes. However, the specific activity of mitochondrial GPAT and phosphatidic acid membrane bound dependent PAPase in microsomes as well as cytosol remained unchanged. These findings suggest that d-Ng acts by inhibiting specifically the hepatic lipogenic enzymes in the microsomes. This subsequently reduces the triglyceride synthesis and secretion by the liver resulting in lower plasma and VLDL triglycerides levels in d-Ng-treated rats.;Studies of VLDL and LDL turnover were carried out by examining the kinetics of labelled apolipoprotein-B of VLDL and LDL (isolated from human and rat plasma) injected into d-Ng-treated and control rats. Analysis of specific activity time curves showed a higher fractional catabolic rate (FCR) of VLDL-apolipoprotein-B compared to controls. This explained the reduction in the pool size of VLDL-apolipoprotein-B because the production rate was unaffected. In contrast to VLDL-apolipoprotein-B, the FCR of LDL-apolipoprotein-B was markedly lower in d-Ng treated rats. This caused the larger pool size of LDL-apolipoprotein-B, since production rate was similar in the two groups. The primary effect of d-Ng on both the lipoproteins was on their efficiency of removal from the plasma. These divergent effects of d-Ng explain both its triglyceride-lowering and cholesterol-elevating effects in rats

    TIMP3 Regulates Mammary Epithelial Apoptosis with Immune Cell Recruitment Through Differential TNF Dependence

    Get PDF
    Post-lactation mammary involution is a homeostatic process requiring epithelial apoptosis and clearance. Given that the deficiency of the extracellular metalloproteinase inhibitor TIMP3 impacts epithelial apoptosis and heightens inflammatory response, we investigated whether TIMP3 regulates these distinct processes during the phases of mammary gland involution in the mouse. Here we show that TIMP3 deficiency leads to TNF dysregulation, earlier caspase activation and onset of mitochondrial apoptosis. This accelerated first phase of involution includes faster loss of initiating signals (STAT3 activation; TGFβ3) concurrent with immediate luminal deconstruction through E-cadherin fragmentation. Epithelial apoptosis is followed by accelerated adipogenesis and a greater macrophage and T-cell infiltration in Timp3−/− involuting glands. Crossing in Tnf deficiency abrogates caspase 3 activation, but heightens macrophage and T-cell influx into Timp3−/− glands. The data indicate that TIMP3 differentially impacts apoptosis and inflammatory cell influx, based on involvement of TNF, during the process of mammary involution. An understanding of the molecular factors and wound healing microenvironment of the postpartum mammary gland may have implications for understanding pregnancy-associated breast cancer risk

    A null mutation for tissue inhibitor of metalloproteinases-3 (Timp-3) impairs murine bronchiole branching morphogenesis.

    Get PDF
    Tissue inhibitors of metalloproteinases (TIMPs) regulate extracellular matrix (ECM) degradation by matrix metalloproteinases (MMPs). We have examined the role of TIMP-3 on ECM homeostasis and bronchiole branching morphogenesis during murine embryogenesis. Employing an in vitro organ culture system, we found decreased bronchiolar branching in null lungs when compared with wild type (WT) counterparts after 2 days in culture. When a synthetic inhibitor of MMPs at low dose was added to the culture system, branching was augmented regardless of genotype. Gelatin and in situ zymography revealed that null lungs exhibited enhanced activation of MMPs throughout lung development. We analysed the impact of increased MMP activity on a number of ECM molecules by Western blot analysis, but found that only fibronectin abundance was consistently reduced in the null lungs throughout development. To confirm that our observed defect in culture was not simply a developmental delay in the null lung, we examined null and WT lungs from newborn pups. Here, we found not only a reduced number of bronchioles in the null, but also that the bronchiole tubes were dilated compared with controls and that alveologenesis was attenuated. We propose that the deletion of TIMP-3 disrupts the exquisite TIMP/MMP balance required for proper focal ECM proteolysis, which leads to correct bronchiole branching morphogenesis in the developing mouse lung

    RANK Signaling Amplifies WNT-Responsive Mammary Progenitors through R-SPONDIN1

    Get PDF
    SummarySystemic and local signals must be integrated by mammary stem and progenitor cells to regulate their cyclic growth and turnover in the adult gland. Here, we show RANK-positive luminal progenitors exhibiting WNT pathway activation are selectively expanded in the human breast during the progesterone-high menstrual phase. To investigate underlying mechanisms, we examined mouse models and found that loss of RANK prevents the proliferation of hormone receptor-negative luminal mammary progenitors and basal cells, an accompanying loss of WNT activation, and, hence, a suppression of lobuloalveologenesis. We also show that R-spondin1 is depleted in RANK-null progenitors, and that its exogenous administration rescues key aspects of RANK deficiency by reinstating a WNT response and mammary cell expansion. Our findings point to a novel role of RANK in dictating WNT responsiveness to mediate hormone-induced changes in the growth dynamics of adult mammary cells

    Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities.

    Get PDF
    The mammary epithelium depends on specific lineages and their stem and progenitor function to accommodate hormone-triggered physiological demands in the adult female. Perturbations of these lineages underpin breast cancer risk, yet our understanding of normal mammary cell composition is incomplete. Here, we build a multimodal resource for the adult gland through comprehensive profiling of primary cell epigenomes, transcriptomes, and proteomes. We define systems-level relationships between chromatin-DNA-RNA-protein states, identify lineage-specific DNA methylation of transcription factor binding sites, and pinpoint proteins underlying progesterone responsiveness. Comparative proteomics of estrogen and progesterone receptor-positive and -negative cell populations, extensive target validation, and drug testing lead to discovery of stem and progenitor cell vulnerabilities. Top epigenetic drugs exert cytostatic effects; prevent adult mammary cell expansion, clonogenicity, and mammopoiesis; and deplete stem cell frequency. Select drugs also abrogate human breast progenitor cell activity in normal and high-risk patient samples. This integrative computational and functional study provides fundamental insight into mammary lineage and stem cell biology

    Modification of BRCA1-associated breast cancer risk by HMMR overexpression

    Get PDF
    Breast cancer risk for carriers of BRCA1 pathological variants is modified by genetic factors. Genetic variation in HMMR may contribute to this effect. However, the impact of risk modifiers on cancer biology remains undetermined and the biological basis of increased risk is poorly understood. Here, we depict an interplay of molecular, cellular, and tissue microenvironment alterations that increase BRCA1-associated breast cancer risk. Analysis of genome-wide association results suggests that diverse biological processes, including links to BRCA1-HMMR profiles, influence risk. HMMR overexpression in mouse mammary epithelium increases Brca1-mutant tumorigenesis by modulating the cancer cell phenotype and tumor microenvironment. Elevated HMMR activates AURKA and reduces ARPC2 localization in the mitotic cell cortex, which is correlated with micronucleation and activation of cGAS-STING and non-canonical NF-kappa B signaling. The initial tumorigenic events are genomic instability, epithelial-to-mesenchymal transition, and tissue infiltration of tumor-associated macrophages. The findings reveal a biological foundation for increased risk of BRCA1-associated breast cancer. The effect of hyaluronan-mediated motility receptor (HMMR) expression in BRCA1-associated breast cancer risk remains unknown. Here, HMMR overexpression induces the activation of cGAS-STING and non-canonical NF-kappa B signalling, instigating an immune permissive environment for breast cancer development

    Experimental manipulation of radiographic density in mouse mammary gland

    Get PDF
    INTRODUCTION: Extensive mammographic density in women is associated with increased risk for breast cancer. Mouse models provide a powerful approach to the study of human diseases, but there is currently no model that is suited to the study of mammographic density. METHODS: We performed individual manipulations of the stromal, epithelial and matrix components of the mouse mammary gland and examined the alterations using in vivo and ex vivo radiology, whole mount staining and histology. RESULTS: Areas of density were generated that resembled densities in mammographic images of the human breast, and the nature of the imposed changes was confirmed at the cellular level. Furthermore, two genetic models, one deficient in epithelial structure (Pten conditional tissue specific knockout) and one with hyperplastic epithelium and mammary tumors (MMTV-PyMT), were used to examine radiographic density. CONCLUSION: Our data show the feasibility of altering and imaging mouse mammary gland radiographic density by experimental and genetic means, providing the first step toward modelling the biological processes that are responsible for mammographic density in the mouse

    Inflammation and breast cancer. Metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer

    Get PDF
    Two rapidly evolving fields are converging to impact breast cancer: one has identified novel substrates of metalloproteinases that alter immune cell function, and the other has revealed a role for inflammation in human cancers. Evidence now shows that the mechanisms underlying these two fields interact in the context of breast cancer, providing new opportunities to understand this disease and uncover novel therapeutic strategies. The metalloproteinase class of enzymes is well studied in mammary gland development and physiology, but mostly in the context of extracellular matrix modification. Aberrant metalloproteinase expression has also been implicated in breast cancer progression, where these genes act as tumor modifiers. Here, we review how the metalloproteinase axis impacts mammary physiology and tumorigenesis and is associated with inflammatory cell influx in human breast cancer, and evaluate its potential as a regulator of inflammation in the mammary gland

    Unraveling metalloproteinase function in skeletal biology and disease using genetically altered mice

    Get PDF
    AbstractThe metalloproteinase family includes MMP, ADAM and ADAMTS proteases. Mice deficient in individual or pairs of metalloproteinases have been generated, and a number of these genetic models spontaneously develop skeletal abnormalities. Here we review metalloproteinase function in endochondral and intramembranous ossification, as well as in postnatal bone remodeling. We highlight how metalloproteinases enable interactions between distinct bone cell types and how this communication contributes to the skeletal phenotypes observed in knockout mice. In addition to the physiological actions of metalloproteinases in the skeletal system, the experimental manipulation of metalloproteinase-deficient mice has revealed substantial roles for these enzymes in osteoarthritis and rheumatoid arthritis. MMP, ADAM and ADAMTS proteases thus emerge as key players in the development and homeostasis of the skeletal system
    • …
    corecore