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Abstract (250) 1 

 2 

Purpose: 3 

To determine the impact of basal-like and classical subtypes in advanced PDAC and to 4 

explore GATA6 expression as a surrogate biomarker. 5 

 6 

Experimental design 7 

Within the COMPASS trial patients proceeding to chemotherapy for advanced PDAC 8 

undergo tumour biopsy for RNA sequencing. Overall response rate (ORR) and overall 9 

survival (OS) were stratified by subtypes and according to chemotherapy received. 10 

Correlation of GATA6 with the subtypes using gene expression profiling, in situ 11 

hybridization (ISH) were explored. 12 

 13 

Results: 14 

Between December 2015-May 2019, 195 patients (95%) had enough tissue for RNA 15 

sequencing; 39 (20%) were classified as basal-like and 156 (80%) as classical. RECIST 16 

response data were available for 157 patients; 29 basal-like and 128 classical where the 17 

ORR was 10% vs. 33% respectively (p=0.02). In patients with basal-like tumours treated 18 

with modified FOLFIRINOX (mFFX) (n=22) the progression rate was 60% compared to 19 

15% in classical PDAC (p= 0.0002). Median OS in the intention to treat population 20 

(n=195) was 9.3 months for classical vs. 5.9 months for basal-like PDAC (HR 0.47 95% CI 21 

0.32-0.69, p=0.0001). GATA6 expression by RNAseq highly correlated with the classifier 22 

(p<0.001) and ISH predicted the subtypes with sensitivity of 89% and specificity of 83%. 23 

In a multivariable analysis, GATA6 expression was prognostic (p=0.02). In exploratory 24 

analyses, basal-like tumours, could be identified by keratin 5, were more hypoxic and  25 

enriched for a T cell inflamed gene expression signature.  26 

 27 

Conclusions 28 

The basal-like subtype is chemoresistant and can be distinguished from classical PDAC 29 

by GATA6 expression. 30 

 31 
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 32 

 33 

Translational relevance 34 

 35 

The transcriptomic basal-like subtype is highly chemoresistant and patients have a 36 

shorter median overall survival compared to classical PDAC. In this study, survival was 37 

lowest in basal-like PDAC treated with modified FFX. GATA6 expression by both RNAseq 38 

and in-situ hybridization (ISH) is highly associated with the classifier where low or 39 

absent GATA6 is seen in the basal-like subtype.  40 

 41 

 42 

  43 
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 45 

Manuscript (3300) 46 

 47 

Introduction  48 

 49 

By 2030, pancreatic ductal adenocarcinoma (PDAC) will become the second leading 50 

cause of cancer related mortality in North America(1). The majority of PDAC patients 51 

present with advanced disease where the mainstay of treatment remains combination 52 

chemotherapy. Modified FOLFIRINOX (FFX) and gemcitabine- nab-paclitaxel (GnP) are 53 

the most commonly used regimens resulting in median survival less than one year (2, 3). 54 

While the need to discover novel approaches is obvious, it is equally important to 55 

understand how to select the aforementioned regimens for current patients. There are 56 

no randomized data that shows superiority of either combination and patient inclusion 57 

differences are evident in the two pivotal phase III trials(2, 3). The only molecular 58 

predictor of response is prior knowledge of a pathogenic germline variant in a 59 

homologous recombination repair gene, which may influence the regimen of choice (4). 60 

Other currently targetable genomic variants are uncommon in PDAC.  61 

 62 

Gene expression profiling, primarily in resected pancreatic tumours, describes a number 63 

of subtypes with considerable overlap, yet presently these do not inform clinical practice 64 

(5-7). Collisson et al. documented three subtypes (classical, quasimesenchymal, and 65 

exocrine-like)(6), Bailey et al. four subtypes (immunogenic, progenitor, ADEX and 66 

squamous)(5) and Moffitt et al. two subtypes (classical and basal-like)(7). The squamous 67 

(Bailey), quasimesenchymal (Collisson) and basal-like (Moffitt) cohorts align well across 68 

the classifiers and all three are associated with a poor prognosis in these studies. Despite 69 

this, varying tumour cellularity and heterogeneity in clustering methodologies leaves 70 

uncertainty as to the most appropriate classifier and furthermore, the clinical application 71 

of these subtypes to advanced stage disease is unclear.  72 

 73 

In an effort to reconcile and apply existing knowledge, we established the COMPASS trial 74 

(Comprehensive Molecular Characterization of Advanced Pancreatic Ductal 75 

Adenocarcinomas (PDAC) for Better Treatment Selection: A Prospective Study, NCT 76 



 
 
 

 7 

NCT02750657). Unique to this prospective study is the acquisition of tissue prior to 77 

chemotherapy in the advanced setting, which then undergoes laser capture 78 

microdissection (LCM) to ensure high tumour cellularity. The primary endpoint of 79 

feasibility in obtaining a high-quality genome report within 8 weeks in the first 50 80 

patients has been published (8). In this earlier analysis, we determined that a modified 81 

Moffitt RNA signature, optimized for use in advanced stage PDAC (classical vs. basal-like, 82 

Supplementary Figure 1) may have prognostic impact (8). Furthermore, we found that 83 

GATA6, a transcription factor required for normal pancreas development(9), which has 84 

been shown to align with the classical subtype could represent a surrogate marker for 85 

classical PDAC (8). Here, we evaluated the modified Moffitt basal-like and classical 86 

subtypes together with GATA6 expression on outcomes in patients receiving mFFX or GnP 87 

regimens on the expanded COMPASS trial. We further explored specific clinical and 88 

pathologic characteristics of the subtypes and evaluated GATA6 as a surrogate biomarker 89 

and clinical tool. Post-hoc exploratory analyses were performed to seek additional 90 

positive biomarkers for the basal-like subtype. 91 

 92 

Methods 93 

 94 

Patient Population 95 

The COMPASS trial is a prospective multi-institutional Canadian cohort study. Patient 96 

eligibility for the study has been previously described(8). Briefly, patients require a 97 

radiologic or histologic diagnosis of locally advanced or metastatic PDAC, suitable for 98 

combination chemotherapy, and must consent to a fresh tumor biopsy prior to treatment 99 

start.  Biopsies can be taken from the primary lesion or any metastatic sites. Patients must 100 

not have had prior treatment for advanced disease. Treatment decisions are at the 101 

discretion of their medical oncologist. Response to therapy is assessed using 102 

computerized tomography (CT) and measured using RECIST 1.1. Demographics and 103 

treatment details, including subsequent treatments are prospectively collected using an 104 

electronic MEDIDATA database. This report includes all patients enrolled from December 105 

2015 until May 2019 and follow-up censored on August 30th2019. Patients on this study 106 

were enrolled at the Princess Margaret Cancer Centre, McGill University Health Centre 107 

(MUHC) and Kingston General Hospital and the study was conducted in accordance with 108 

the Declaration of Helsinki. The COMPASS trial has been approved by participating site 109 
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Institutional Review Board (University Health Network, MUHC Centre for Applied Ethics, 110 

and Queen’s University Health Sciences and Affiliated Teaching Hospitals Research Ethics 111 

Board); each patient provided written informed consent prior to study entry. 112 

 113 

RNA sequencing and GATA6 expression 114 

Frozen biospecimens underwent LCM for tumor enrichment. RNAseq analysis was 115 

performed at the Ontario Institute of Cancer Research as previously described (10). 116 

Briefly, reads were aligned to the human reference genome (hg38) and transcriptome 117 

(Ensembl v84) using STAR v.2.5.2a (11). Duplicated reads were marked using Picard v. 118 

1.121 (https://github.com/broadinstitute/picard). Gene expression was calculated in 119 

fragments per kilobase of exon per million reads mapped (FPKM) using the cufflinks 120 

package v. 2.2.1 (12). A modified Moffitt classification (classical vs. basal-like) was 121 

applied to each sample with sufficient RNA for analysis (Supplementary Figure 1). Cut-122 

off threshold levels for GATA6 expression were determined using the maximal chi-123 

squared method on RECIST response and dichotomised GATA6 expression.  124 

 125 

GATA6 RNA in situ hybridization (ISH) 126 

Given our early results, the COMPASS trial was amended (01-Feb-2017) to include 127 

GATA6 staining using an RNAscope® in situ hybridization (ISH) assay (Advanced Cell 128 

Diagnostics Inc., Hayward, CA).  A semi-quantitative score was used by the study 129 

pathologist (SF)  (Supplementary Figure 2A) as previously reported (8). Scoring was 130 

applied blinded to results of the modified Moffitt classifier.  131 

 132 

Immunohistochemical analysis of GATA6 and keratins 133 

To provide more widely applicable diagnostic tests for PDAC subtypes, we optimized a 134 

protocol for GATA6 immunohistochemistry (IHC) (emethods) using a polyclonal anti-135 

GATA6 antibody from R&D (Cat. Number AF1700), and secondary antibody from Vector 136 

(Cat. Number VECTABA5000). DAB+ (3,3-diaminobenzidine tetrahydrochloride plus, 137 

DAKO, Cat. Number K3468) was used as chromogen and nuclei were counterstained with 138 

Mayer’s hematoxylin.) (Supplementary Figure 2B). To assess the pattern of GATA6 staining 139 

across larger tumor regions, we used whole sections (n=30) from a previously described 140 

resection cohort with matched RNAseq data (10) together with biopsies (n=41) from the 141 

advanced cohort.  142 
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 143 

In an exploratory analysis, we sought additional clinical markers to aid subtype identification; 144 

cytokeratins associated with GATA6 expression were identified from RNAseq data and further 145 

explored by IHC (emethods).  146 

 147 

Image analysis 148 

To control for potential bias of manual scorings of both ISH or IHC, we performed image 149 

analysis on pre-annotated tumor sections using image analysis software QuPath v0.1.3 150 

(13). Detection parameters were established on unequivocal GATA6-high versus -low 151 

versus -absent tumors and confirmed by the study pathologist. Semi-quantitative (SQ) 152 

scores were also predicted from image analysis data using the maximal chi-squared 153 

method. 154 

 155 

Statistical Analysis 156 

Qualitative variables were compared by Fisher’s exact test, and quantitative variables by 157 

Wilcoxon rank sum test for pairwise comparison and the Kruskal-Walis test for multiple 158 

group comparison. All patients receiving at least 1 cycle of chemotherapy were included 159 

in the analysis of overall response rate (ORR). Survival curves were plotted using the 160 

Kaplan–Meier method and hazard ratios were calculated using Cox proportional hazard 161 

regressions with p-values calculated using the Wald statistic. All tests were two-sided. 162 

Multiple tests p-values were adjusted using Benjanimi and Hochberg method (14) for 163 

independent tests or Benjamini and Yekutieli method (15) for dependent tests, 164 

respectively. Statistical significance was set at p = 0.05. All analyses were conducted in R 165 

version 3.2 (16). Spearman correlation coefficients were ascertained for evaluating gene 166 

expression. Sensitivity, specificity and accuracy scores were computed to assess 167 

prediction quality. 168 

 169 

 170 

Results 171 

 172 

Patient characteristics at baseline 173 

 174 
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Between 30th December 2015 and May 30th2019, 250 patients were enrolled and 206 175 

were eligible (Figure 1-Consort). Of these, 195 patients (95%) had enough tissue for 176 

RNA analysis and are included in this report. Table 1 shows baseline clinical and 177 

pathological characteristics of those patients. Using the modified Moffitt classifier, 39 178 

(20%) baseline tumor samples were basal-like, and 156 (80%) classical. Locally 179 

advanced disease at diagnosis was present in 24 (12%) and these cases, in this small 180 

subset, were all identified as classical (p=0.005). Liver metastases were present in 97% 181 

of basal-like tumors compared with 69% of classical tumors (which includes the locally 182 

advanced cases) (p<0.0001). Although basal-like tumors were more frequent in male 183 

patients (p=0.02) the overall sample size was small,  Other characteristics were similar 184 

between the groups (Table 1). 185 

 186 

Response to chemotherapy according to modified Moffitt classification. 187 

 188 

Of the 195 patients, 14 (7%) did not receive any chemotherapy and were considered non-189 

evaluable (NE). A further 23 patients (12%) died as a result of rapid functional decline 190 

prior to their first scan, of which 19 received only 1 cycle of chemotherapy; five of these 191 

23 had basal-like PDAC. One patient receiving mFFX did not have measurable disease at 192 

enrolment. Accordingly, RECIST response data were available for 157 patients (81%) 193 

including 29 patients with basal-like tumours and 128 with classical tumours (Figure 194 

2A). The ORR in classical PDAC was 33% vs. 10% in basal-like PDAC (p=0.02). The rates 195 

of progression by RECIST criteria at first CT image were much higher in basal-like vs. 196 

classical PDAC (52% vs. 16% <0.0001). Figure 2A shows the percentage change in target 197 

lesions, demonstrating chemoresistance of the basal-like subtype. In patients treated 198 

with mFFX and evaluable for response (n=91), progression  was evident in 60% of basal-199 

like vs. 15% of classical PDAC (p=0.0002) (Figure 2B). The ORR was 29.6% vs. 10% in 200 

classical vs. basal-like PDAC (p=0.09). One patient in the latter group with a partial 201 

response (PR) had a germline BRCA2 pathogenic variant and displayed genomic 202 

characteristics of homologous recombination deficiency. The numbers treated with GnP 203 

regimens and available for response were small, progression of disease was seen in 3/9 204 

(33%) patients with basal-like vs. 8/54 (15%) with classical tumours (p=0.18) (Figure 205 

2C). The ORR was 39% vs. 11% in classical vs. basal-like PDAC respectively (p=0.14). Of 206 

note, 20/63 (32%) received additional experimental agents in this group. 207 



 
 
 

 11 

 208 

Overall survival according to the modified Moffitt classification 209 

 210 

Overall survival in the intention to treat population (n=195) is shown in Figure 3A. 211 

Median follow-up is 7.17 months. Median overall survival according to receipt of 212 

chemotherapy is shown in Figure 3B. In patients receiving mFFX (n=103) where 213 

performance status was less likely to confound results, median overall survival was 6.5 214 

months in basal-like vs. 10.6 months in classical subgroups (HR 0.33 95% CI 0.19-0.60, 215 

p=0.0001). These observations suggest favourable impact of mFFX in classical PDAC but 216 

little impact of mFFX in the basal-like population (Figure 3C). In contrast, there was no 217 

difference between subgroups when treated with GnP regimens, where median overall 218 

survival, was 8.12 months in basal-like vs. 8.19 months in classical groups respectively 219 

(HR 0.80 95% CI 0.40-1.60, p=0.53) (Figure 3D).  In a multivariable Cox proportional 220 

hazard regression analysis, the Moffitt subtype remained highly prognostic (p=0.018). 221 

Substituting GATA6 expression for the Moffit subtype also demonstrated the prognostic 222 

impact of GATA6  in the model, again supporting its use as a biomarker of the subtypes. 223 

Of note, stage (locally advanced versus metastatic) or chemotherapy type had no impact 224 

in this observational cohort study (Supplementary Figure 3). To further explore if there 225 

was a significant interaction between FFX or GnP and the subtypes, we performed an 226 

interaction analysis. There was no statistically significant difference to suggest one 227 

chemotherapy regimen for one particular subtype, although basal-like tumours trended 228 

toward improved survival with GnP, p=0.08. Of note, the modified Moffitt classifier used 229 

in this study, outperforms the previously published Moffitt classifier in identifying the 230 

poor prognostic basal-like subtype (Supplementary Figure 1B). 231 

 232 

 GATA6 expression by RNAseq and RNA ISH is associated with modified Moffitt 233 

subtypes. 234 

 235 

GATA6 expression remained strongly associated with the modified Moffitt 236 

transcriptomic classifier (p<0.001) in this expanded cohort (Figure 4A, left). In addition, 237 

the proposed RNA ISH Semiquantitative (SQ) score was highly associated with GATA6 238 

gene expression (RNASeq) (p<0.001) (Figure 4A, right). Matched RNAseq and ISH 239 

results were available in 106 patients (23 with basal-like, 83 with classical subtypes). SQ 240 
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scoring of GATA6 ISH confirmed higher GATA6 expression (74/83 score 2-4) in classical 241 

vs. basal-like PDAC (19/23 score 0-1).  Furthermore, GATA6 ISH correlated with modified 242 

Moffitt with a sensitivity of 89%, specificity of 83% and accuracy of 88%. Both manual 243 

scores and modified Moffitt calls could be predicted from image analysis data with 244 

concordance of 92% and 81%, respectively, confirming reproducibility of 245 

semiquantitative assessment (n= 106). The modified Moffitt signature remained 246 

prognostic in this staining sub-cohort (Figure 4B); both GATA6 ISH SQ scoring (Figure 247 

4C) and subtyping inferred from image analysis of GATA6 ISH (Figure 4D) predicted 248 

outcome in a similar manner. 249 

 250 

 251 

GATA6 IHC may discriminate basal-like from classical PDAC 252 

 253 

Matched IHC and ISH results were available in only 78 advanced PDAC cases. GATA6 254 

levels by IHC and ISH were well correlated using quantitative assessment 255 

(Supplementary Figure 4A) and semi-quantitative scoring (concordance 88%), 256 

indicating that GATA6 protein levels mirror RNA expression and could aid subtype 257 

identification when RNA detection is not feasible. Indeed, IHC-based semi-quantitative 258 

scoring identified most patients with classical subtype tumors by strong and moderate 259 

GATA6 staining (52/63 with scores 2-4) while basal-like subtype patients mostly 260 

exhibited no or weak GATA6 staining (9/15 with scores 0-1), so that GATA6 protein 261 

detection by IHC was associated with modified Moffitt subtypes in advanced PDAC with 262 

a sensitivity of 83%, specificity of 60%, and accuracy of 78%. Once more, this was 263 

confirmed by quantitative assessment (Supplementary Figure 4B) and the concordance 264 

between prediction of GATA6 scoring from image analysis to manual scoring of GATA6 265 

was 90%.  266 

 267 

Tissue distribution of GATA6 by IHC in a subset or resectable and metastatic PDAC 268 

 269 

Recent data are emerging that basal and classical subtypes can co-exist in PDAC (17, 18). 270 

We therefore explored potential variation in GATA6 expression patterns. We used whole 271 

sections from selected resected cases (n=30) in addition to needle biopsies (n=41). 272 

Although early stage tumours may not necessarily reflect the biology of advanced disease 273 
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adequate  tumor content is available for mor complete evaluation. GATA6 staining (IHC) 274 

in resected specimens  that were basal-like (n=14) and classical (n=16)  also associated 275 

with the Moffitt subtypes: extensive immunopositivity for GATA6 (>50% of tumour cells 276 

with score 2 or higher) was found in 9/16 (56%) classical tumours vs. 1/14 (7%) basal-277 

like tumours. (Supplementary Table 1). Interestingly, variable GATA6 278 

immunopositivity (<50% of tumour cells with score 2 or higher) was present in 4/16 279 

(25%) and 4/14 (28%) of classical and basal-like tumours, respectively, documenting a 280 

group where these subtypes may co-exist.  This was furthermore observed in a number 281 

of advanced PDAC biopsies, which also exhibited variable GATA6 expression by ISH and 282 

IHC (Supplementary Figure 5), demonstrating that regional GATA heterogeneity can 283 

exist in resectable and advanced stage tumors. These differences were also observed at 284 

the cellular level by image analysis (Supplementary Figure 6). In sum, GATA6 staining 285 

patterns were widely comparable across whole sections of 22/30 (73%) resection cases. 286 

Variable GATA6 immunopositivity was present in a subset of both, classical and basal-287 

like subtypes, in resectable and advanced disease, which may point at the presence of 288 

classical and basal regions in the same tumor.  289 

 290 

 291 

Keratin 5 may positively identify the basal-like subtype. 292 

GATA6 positively identifies classical PDAC, but markers for the basal subtype are lacking. 293 

In an exploratory analysis, we evaluated keratin markers associated with GATA6 294 

expression. In line with their use as basal markers in other tumor types (19, 20), keratins 295 

15, 5/6, 23 and 14 were inversely correlated with GATA6 expression and thus the 296 

classical subtype (Supplementary Figure 7A). In this post-hoc analysis, none of the 297 

identified cytokeratins were superior to GATA6 in their association with modified Moffitt 298 

subgroups, including keratin 17, a prognostic marker in PDAC (21) (Supplementary 299 

Figure 7B). Among these, keratin 5 (CK5) demonstrated the strongest expression 300 

differences between basal-like and classical tumors and was found to be complementary 301 

to GATA6 expression in our cohort (Supplementary 8). Furthermore, GATA6 and 302 

keratin 5 often demonstrated complementary staining pattern by IHC in PDAC tissues, 303 

including in 41 COMPASS biopsies and 30 resected PDAC whole sections 304 

(Supplementary Table 1, Figure 5). From these specimens, we observed the presence 305 

of both GATA6 and CK5 staining in a subset of cases (Figure 5, bottom panels). Indeed, 306 
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the intratumoral staining pattern of the two markers was predominantly inversely 307 

correlated in 149 individual tumor regions from the 30 resected cases (Figure 6A). Of 308 

note, this analysis revealed a small number of regions that contained considerable 309 

number of both CK5+ and GATA6+ cells (Figure 6A). Double immuno-staining confirmed 310 

distinct GATA6+/CK5- and GATA6-/CK5+ regions within the same tumor (Figure 6B) 311 

and in individual ducts (Figure 6C), which further support the notion that basal-like and 312 

classical programs can co-exist in the same tumor.  Overall, many basal-like cases of 313 

advanced PDAC showed CK5 positivity (10/19, 53%) whereas most classical tumors 314 

(22/23, 96%) exhibited scant (<10%) or negative CK5 staining. Keratin 5 was thus highly 315 

specific and also showed remarkable intratumoral complementarity to GATA6 staining 316 

suggesting a clinically relevant biomarker of the basal-like subtype.  317 

 318 

Additional molecular characteristics of the basal-like phenotype 319 

 320 

Among the 195 eligible COMPASS patients, all 8 (4%) with adenosquamous histology 321 

were basal-like and stained positive for keratin 5 by IHC, with negligible GATA6 322 

expression by RNA ISH. We have previously shown that the basal-like subgroup is 323 

enriched in a hypoxia-associated gene signature by gene set enrichment analysis (22)  324 

and this observation is retained in this expanded dataset (p=0.0003). In addition, we 325 

found higher PD-L1 expression in the basal-like cohort (p<0.001), higher PD-1 expression 326 

(p<0.001) and enrichment of a T-cell inflamed signature previously reported (23, 24) 327 

(p=0.007) (Supplementary Figure 9). Tumour mutational burden was not different 328 

between groups (2.02 mutations/Mb vs 1.96 mutations/Mb) and was consistent with 329 

that seen in an unselected PDAC cohort (25).  330 

 331 

 332 

Discussion 333 

 334 

Combination chemotherapy is used in the treatment of most patients with advanced 335 

PDAC, yet the field is lacking robust biomarkers of outcome to guide regimen selection. 336 

Here, we show that patients with tumors of a modified ‘basal-like’ phenotype, or those 337 

with low GATA6 RNA expression, have inferior outcomes compared to those with the 338 

‘classical’ phenotype. The latter are accurately identified by high GATA6 expression and 339 
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positive GATA6 staining by in situ hybridization (ISH). Our data also suggests that basal-340 

like tumours are particularly resistant to mFFX, warranting further investigation.  341 

 342 

Both the PRODIGE4/ACCORD 11 and the MPACT PDAC trials of metastatic disease 343 

demonstrated an improved in survival with FOLFIRINOX and GnP across all sub-cohorts 344 

compared with gemcitabine alone(2, 3), yet they provide little insight into which 345 

subgroups might benefit the most. Notably, our study shows no superiority in either 346 

regimen in an unselected population with regard to survival.  In the aforementioned 347 

trials, histological groups were not documented in either study, which is not unusual 348 

since many patients have a diagnosis made from very small samples or brushings. In 349 

contrast, the histological classification in resected specimens can be more easily reported 350 

and the PRODIGE24/ CCTG PA6 trial of mFFX in the adjuvant setting documented the 351 

prognostic impact of tumour grade in multivariable analysis (26) In patients receiving 352 

mFFX, those with well-differentiated tumors benefited the most (HR 0.52, 95% CI 0.34-353 

0.81) whereas the impact in poorly differentiated tumors was not significant. Although 354 

limitations to the three-tiered histological classification (poor, moderate and well-355 

differentiated) in PDAC have been noted (27), well-differentiated tumors highly express 356 

the classical program and GATA6 (28).  357 

 358 

The resistance of the basal-like subtype to mFFX is supported by a recent collaborative 359 

study by Tiriac et al (29)demonstrating that patient- derived organoid (PDO) 360 

chemotherapy signatures may predict treatment response. The signatures indicative of 361 

individual cytotoxic agents were applied to our COMPASS cohort suggesting that the 362 

basal-like cohort subgroup was most likely to have a non-oxaliplatin sensitive 363 

signature(29).  We furthermore hypothesize that basal-like tumours may have limited 364 

sensitivity to 5-Fluorouracil. Martinelli et al. demonstrated GATA6 loss in resected PDAC 365 

with a basal-like phenotype in the ESPAC-3 trial, and shorter survival in these patients 366 

when treated with adjuvant 5-Fluorouracil . This study also showed that GATA6 low cell 367 

lines derived from patient-derived xenografts were particularly resistant to 5-FU but not 368 

gemcitabine (30). Notably oxaliplatin was not evaluated. In search of treatment 369 

alternatives, we report here that basal-like tumors had higher hypoxia scores, and higher 370 

PD-1 and PD-L1 expression with enrichment of a T cell inflamed signature (24) which 371 

may be predictive of immunotherapy response(23), suggesting a therapeutic strategy for 372 
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clinical trial design in this chemoresistant group. Similarly, triple negative breast cancers, 373 

although associated with worse outcomes, have higher levels of tumour infiltrating 374 

lymphocytes compared to hormone receptor positive, HER2-ve tumours. The impact of 375 

immune populations within subtypes in PDAC will require further investigation (31). 376 

 377 

Clinical applicability of RNA sequencing and tumor enrichment by LCM is currently 378 

limited given tissue acquisition, cost and time to reporting. GATA6 detection from FFPE 379 

needle biopsies at diagnosis is therefore an attractive surrogate for transcriptomic 380 

classifiers. We demonstrate concordance of GATA6 ISH with the subtypes with sensitivity 381 

and specificity of over 80% in our tumor-enriched samples. Of note, the GATA6 gene is 382 

not part of the original Moffitt subtype signatures but rather the Bailey squamous 383 

classifier, which largely overlaps with Moffitt calls in high purity samples (5). The  384 

number of tissue specimens available for matched ISH, IHC and RNAseq was low in our 385 

study (n=78, 40%). Therefore, although specificity was much lower for IHC compared to 386 

ISH, a prospective study with adequate tissue for matched analysis is needed. 387 

Recognizing that the identification of the basal-like subtype is critical and that GATA6 is 388 

a negative marker we sought additional positive keratin biomarkers that may be more 389 

feasible for the practicing clinician. Of these, keratin 5 predicted outcomes best after 390 

GATA6 expression and was found to exhibit high complementarity to GATA6 staining 391 

pattern and RNA expression levels. Moreover, combined keratin 5 and GATA6 stainings 392 

on serial sections and by double immune-staining have consistently suggested that basal-393 

like and classical elements can co-exist in a subset of PDAC cases, which strongly 394 

reinforces the need for a positive basal-like biomarker and has major implications for 395 

rationalizing subtype-specific treatments. We are currently evaluating combined staining 396 

of GATA6 and keratin 5 on the COMPASS trial.  397 

 398 

Notably microdissected tissue, although impractical in  laboratory  medicine practice, 399 

most accurately detects tumour gene expression, with comparatively less exocrine and 400 

immune compartments compared to TCGA datasets, as recently described(32). This 401 

therefore implies that more reliable biomarkers can be determined from highly cellular 402 

specimens. CA-19.9 is the only approved biomarker for monitoring disease in the 403 

advanced setting (33) and the POLO trial has now documented a benefit for maintenance 404 

PARPi in patients with germline BRCA mutations(4). Robust subtyping of pancreatic 405 
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cancer will be critical to advancing the field, GATA6 as a single biomarker and highly 406 

correlated with the Moffitt classifier will now be evaluated in a prospective trial. 407 

 408 

This study is limited by few progression biopsies to understand the stability of the 409 

subtypes under selective pressure during chemotherapy. This is especially interesting in 410 

light of the co-existence of basal-like and classical elements, documented here and 411 

elsewhere (17, 18). In addition, the numbers of basal-like tumours treated with GnP 412 

regimens is low and the GnP group is potentially confounded by performance status. The 413 

interaction term for chemotherapy type and subtype was not significant in this study 414 

although numbers were low. We therefore cannot conclude whether GnP is a better 415 

strategy in the basal-like cohort, rather our data suggests alternative therapies are 416 

urgently needed and clinical trials to evaluate this particular group are warranted. With 417 

mFFX as current treatment of choice in the adjuvant setting, understanding 418 

chemotherapy response to subtypes has increasing importance. It should also be noted 419 

that the response rates and survival between those receiving mFFX and GnP were not 420 

statistically different in this analysis. This is supported by the recent HALO trial 109-321 421 

study where response rates and overall survival are comparable to historical outcomes 422 

with mFFX(2, 34). This furthermore supports the need to understand which populations 423 

can benefit most from these regimens and a prospective trial has now been planned. 424 

 425 

In the major tumor types of lung and colorectal cancer, factors such as histological 426 

subtype, molecular profile and PD-L1 status can influence the choice of upfront systemic 427 

treatment in advanced disease and have resulted in survival gains (35-37). Since PDAC 428 

will soon become the second leading cause of cancer related mortality, it behooves the 429 

oncology community to invest in biomarkers helpful for selecting standard 430 

chemotherapy. In this study, we confirm the prognostic impact of the modified Moffitt 431 

subtypes and demonstrate that basal-like PDAC responds poorly to mFFX. The basal-like 432 

cohort can be accurately identified by GATA6 RNA expression, providing a putative single 433 

important biomarker in clinical trial design. 434 



 
 
 

 18 

Figure Legends 
 
Figure 1: Consort Diagram of patients enrolled and included on the COMPASS trial. 250 
patients were enrolled  and 232 patients underwent biopsies. Biopsy sites included liver, 
pancreas and peritoneum/omentum. 195 patients were eligible with RNAseq data 
representing the study population. 
 
Table 1: Baseline characteristics of cases enrolled according to modified Moffitt 
classification (classical vs. basal-like) 
 
Figure 2: Waterfall plots demonstrating tumour size change according to modified 
Moffitt classifier 

A) Tumour size change in all patients included (n=194*): This includes any 
chemotherapy received. The Non Evaluable patients did not have imaging to 
determine response 

B) Tumour size change in patients receiving first-line modified FOLFIRINOX  (mFFX) 
(n=102*) 

C) Tumour size change in patients receiving gemcitabine/nab-paclitaxel (GnP) 
regimens (n=71) 

 
*1 patient with non-measurable disease is not included 

NE: non evaluable 
mFFX: modified FOLFIRINOX 
GnP: gemcitabine/nab-paclitaxel 
  New lesions 

 
 
Figure 3: Kaplan Meier overall survival curves according to modified Moffitt 
subtype and chemotherapy received 
 

A) Overall survival in the intention to treat population (n=195) which includes 
patients who did not receive chemotherapy or who were non evaluable 

B) Overall survival in patients receiving first line  mFFX or GnP regimens (at least 1 
cycle) and is presented according to modified Moffitt subtype (n=174). This graph 
integrates curves in 3C and 3D. 

C) Overall survival in patients receiving ≥ 1 cycle mFFX (n=103) according to 
modified Moffitt subtype 

D) Overall survival in patients receiving ≥ 1 cycle GnP regimens (n=71) according to 
modified Moffitt subtype. 
 

Figure 4: GATA6 expression is associated with modified Moffitt subtypes in 
advanced PDAC 

A) Gata6 expression by RNAseq versus modified Moffitt subtypes (left), and GATA6 
expression by RNAseq versus GATA6 ISH (right). Scores of 0-1 reflect the basal-
like subtype and 2-5 the classical subtype. 

B) Kaplan Meier curve of overall survival by modified Moffitt in patients with 
matched tissue for RNAseq and GATA6 ISH analysis (n=106). 

C) Kaplan Meier curves of overall survival by GATA6 ISH semi-quantitative analysis 
in patients with matched tissue for RNAseq and GATA6 ISH analysis (n=106). 
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D) Kaplan Meier curve of GATA6 by QuPath image analysis in those patients with 
matched tissue for RNAseq and GATA6 ISH (n=106). 
 

 
Figure 5: Pathology images comparing GATA6 staining by ISH and IHC, together 
with CK5 IHC staining 

A) Advanced PDAC cases: 
COMP-022: Classic with glandular architecture (HE), GATA6 ISH score 3, GATA6 
IHC score 2, CK5 negative (rare positive cells), magn 100x 
COMPA-0234: Basal-like with squamous features (HE), GATA6 ISH score 1, GATA6 
IHC score 1 (weak/focal), CK5 positive, magn 100x 
COMP-0135: Basal-like with poor differentiation (HE), GATA6 ISH score 2 
(variable distribution), GATA6 IHC score 2 (variable distribution), CK5 positive, 
magn 100x 
 

B) Resected PDAC cases: 
Expression pattern of GATA6 and CK5 in resected PDAC. 
PCSI_639: Classic with glandular architecture (HE), GATA6 ISH score 3, GATA6 
IHC score 2, CK5 negative, magn 100x. 
PCSI_588: Basal-like with squamous features (HE), GATA6 IHC score 1 
(weak/focal), CK5 positive, magn 100x. 
PCSI_645: Classic with dual phenotype (glandular and squamous) on HE, GATA6 
IHC score 2 (variable distribution), CK5 positive, magn 25x. 

 
Figure 6: Tissue pattern of GATA6 and keratin 5 expression 

A) IHC staining of GATA6 and keratin 5 on serial sections from resected PDAC 
specimen (n = 30). Representative images, magn 25x (left). Quantification of the 
percentage of GATA6+ or CK5+ cells, respectively, in 149 matched regions on 
adjacent sections (right).   

B) Dual immunostaining of GATA6 (brown) or CK5 (magenta) in resected PDAC 
revealing distinct regions of GATA6 or CK5 immunoreactivity, magn 25x. 

C) Dual immunostaining of GATA6 (brown) or CK5 (magenta) revealing GATA6 and 
CK5 immunoreactivity in the same tumour ducts. Resected PDAC (left); advanced 
PDAC (right); magn 400x. 
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Table 1: Baseline characteristics of patients included (n=195) 
 

 Classical (N= 156) 
N, % 

Basal-like (N=39) 
N, % 

p value 

Median age (yrs) 64.0 (29-84) 65.0 (44-83) 0.75 
Sex 

Male 
Female 

 
83 (53) 
73 (47) 

 
29 (74) 
10 (26) 

 
 

0.02 
Stage 

Metastatic 
Locally advanced  

 
132 (85) 

24 (15) 

 
39 (100) 

0 (0) 

 
 

0.005 
Race 

White 
Asian 

African/other 
Unknown 

 
119 (79) 

28 (19) 
4 (3)  

5 

 
27 (77) 

6 (17) 
2 (6) 

4 

 
 
 
 

0.23 
Prior resection  

Yes 
No 

 
13 (8) 

143 (92) 

 
3 (8) 

36 (92) 

 
 

0.99 
CA19.9 (median, range) 1832 (1-371847) 1124 (1-71956) 0.24 
Ever Smoker  
                                                                   Yes 

No 

 
80 (51)  
76 (49) 

 
23 (59) 
16 (41) 

 
 

0.47 

Type II DM ≥18mths 
Yes 
No 

Unknown 

 
32 (21)  

120 (79) 
4 

 
8 (21) 

30 (79) 
1 

 
 

0.99 

Liver metastases 
Yes 
No 

 
108(69) 

48(31) 

 
38 (97) 

1 (3) 

 
 

<0.0001 

HRD genotype* 
Yes  
No 

 
14 (9) 

142 (91) 

 
2 (5) 

37 (95) 

 
 

0.74 
First chemotherapy 

mFolfirinox 
GnP-regimens 

Gem/nab-paclitaxel alone  
Gem/nab-paclitaxel+experimental 
Cisplatin/Gem or Gem alone 

None 

 
81 (52) 
61 (39)  

43 
18 

5 (3) 
9 (6) 

 
22 (59) 
10 (26) 

8 
2 

2 (5) 
5 (13) 

 
 
 
 
 
0.25 

 



Consort Diagram 

Enrolled May 30th 2019 (N = 250) 

 
Eligible (N = 206) 

RNAseq available: (N= 195) 
 

Data cut-off August 30th , 2019 
• Alive on first line: n=29  
• Alive off study: n=23 
• Dead: n= 143 

No biopsy (n = 18) 
• Withdrawal of consent (n=14) 
• Unsafe biopsy (n=3) 
• Did not meet eligibility criteria (n=1) 
 

Biopsies (N = 232) 
• Pancreas (n = 56) 
• Liver (n = 151) 
• Omentum/Peritoneum (n = 21) 
• Other (n=4) 

Non-Participants (n = 26) 
• Other histology/subtype (n = 10) 
• Insufficient Tumor (n = 7) 
• Withdrawal of consent (n=1) 
• Declined chemotherapy (n=7) 
• Did not meet eligibility (n=1) 
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Median OS 
Classical FFX: 10.62 months 
Classical GnP: 8.19 months 
Basal-like FFX: 6.54 months 
Basal-like GnP: 8.12 months 

Median OS 9.27 vs 5.85 months 
 HR 0.47  95% CI 0.32-0.69, p=0.0001 

Median OS 10.62  vs 6.54 months 
 HR 0.33  95% CI 0.19-0.60, p=0.0001 

Median OS 8.19 vs 8.12 months 
 HR 0.80  95% CI 0.40-1.60, p=0.53 

Figure 3D Figure 3C 

Figure 3A Figure 3B 

Median OS
Classical FFX: 10.62 months
Classical GnP: 8.19 months
Basal-like FFX: 6.54 months
Basal-like GnP: 8.12 months

Median OS 9.27 vs 5.85 months
HR 0.47  95% CI 0.32-0.69, p=0.0001

Median OS 10.62  vs 6.54 months
HR 0.33  95% CI 0.19-0.60, p=0.0001

Median OS 8.19 vs 8.12 months
HR 0.80  95% CI 0.40-1.60, p=0.53
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Figure 4A 



Median OS 8.65 vs 5.16 months 
 HR 0.40  95% CI 0.24-0.67, p=0.0003 

Median OS 8.65 vs 5.51 months 
 HR 0.53  95% CI 0.32-0.85, p=0.0076 

Median OS 8.84 vs 6.54 months 
 HR 0.58  95% CI 0.37-0.91, p=0.017 
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