3,425 research outputs found
Peroxisome Proliferator Activated Receptors and Lipoprotein Metabolism
Plasma lipoproteins are responsible for carrying triglycerides and cholesterol in the blood and ensuring their delivery to target organs. Regulation of lipoprotein metabolism takes place at numerous levels including via changes in gene transcription. An important group of transcription factors that mediates the effect of dietary fatty acids and certain drugs on plasma lipoproteins are the peroxisome proliferator activated receptors (PPARs). Three PPAR isotypes can be distinguished, all of which have a major role in regulating lipoprotein metabolism. PPARα is the molecular target for the fibrate class of drugs. Activation of PPARα in mice and humans markedly reduces hepatic triglyceride production and promotes plasma triglyceride clearance, leading to a clinically significant reduction in plasma triglyceride levels. In addition, plasma high-density lipoprotein (HDL)-cholesterol levels are increased upon PPARα activation in humans. PPARγ is the molecular target for the thiazolidinedione class of drugs. Activation of PPARγ in mice and human is generally associated with a modest increase in plasma HDL-cholesterol and a decrease in plasma triglycerides. The latter effect is caused by an increase in lipoprotein lipase-dependent plasma triglyceride clearance. Analogous to PPARα, activation of PPARβ/δ leads to increased plasma HDL-cholesterol and decreased plasma triglyceride levels. In this paper, a fresh perspective on the relation between PPARs and lipoprotein metabolism is presented. The emphasis is on the physiological role of PPARs and the mechanisms underlying the effect of synthetic PPAR agonists on plasma lipoprotein levels
Peroxisome Proliferator-Activated Receptor Alpha Target Genes
The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well
SMEs entry mode decision making process: Rational or cybernetic?
Entry mode choice is a critical decision when a firm expends its business to foreign markets. By applying rational and cybernetic strategies to international strategic decision-making process, this paper investigates how small and medium sized firms (SMEs) decision makers decide their entry mode choices. By focusing on the entry decision making process, this research distinguishes the prior entry mode studies that emphasize the relationship between influencing factors and their impacts on entry mode choices. The results of this study show that SME managers normally adapt a combination of rational and cybernetic strategies in their international entry decision making process. This highlights that SMEs’ international entry decision making process is dynamic and complex
Angptl4 serves as an endogenous inhibitor of intestinal lipid digestion
Dietary triglycerides are hydrolyzed in the small intestine principally by pancreatic lipase. Following uptake by enterocytes and secretion as chylomicrons, dietary lipids are cleared from the bloodstream via lipoprotein lipase. Whereas lipoprotein lipase is inhibited by several proteins including Angiopoietin-like 4 (Angptl4), no endogenous regulator of pancreatic lipase has yet been identified. Here we present evidence that Angptl4 is an endogenous inhibitor of dietary lipid digestion. Angptl4−/− mice were heavier compared to their wild-type counterparts without any difference in food intake, energy expenditure or locomotor activity. However, Angptl4−/− mice showed decreased lipid content in the stools and increased accumulation of dietary triglycerides in the small intestine, which coincided with elevated luminal lipase activity in Angptl4−/− mice. Furthermore, recombinant Angptl4 reduced the activity of pancreatic lipase as well as the lipase activity in human ileostomy output. In conclusion, our data suggest that Angptl4 is an endogenous inhibitor of intestinal lipase activity
Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor α (PPARα)
<p>Abstract</p> <p>Background</p> <p>The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by heat shock (HS) through activation by HS factor-1 (HSF1). We hypothesized that there are interactions on a genetic level between PPARα and the HS response mediated by HSF1.</p> <p>Results</p> <p>Wild-type and PPARα-null mice were exposed to HS, the PPARα agonist WY-14,643 (WY), or both; gene and protein expression was examined in the livers of the mice 4 or 24 hrs after HS. Gene expression profiling identified a number of <it>Hsp </it>family members that were altered similarly in both mouse strains. However, most of the targets of HS did not overlap between strains. A subset of genes was shown by microarray and RT-PCR to be regulated by HS in a PPARα-dependent manner. HS also down-regulated a large set of mitochondrial genes specifically in PPARα-null mice that are known targets of PPARγ co-activator-1 (PGC-1) family members. Pretreatment of PPARα-null mice with WY increased expression of PGC-1β and target genes and prevented the down-regulation of the mitochondrial genes by HS. A comparison of HS genes regulated in our dataset with those identified in wild-type and HSF1-null mouse embryonic fibroblasts indicated that although many HS genes are regulated independently of both PPARα and HSF1, a number require both factors for HS responsiveness.</p> <p>Conclusions</p> <p>These findings demonstrate that the PPARα genotype has a dramatic effect on the transcriptional targets of HS and support an expanded role for PPARα in the regulation of proteome maintenance genes after exposure to diverse forms of environmental stress including HS.</p
MicroRNA-204-5p modulates mitochondrial biogenesis in C2C12 myotubes and associates with oxidative capacity in humans
Using an unbiased high-throughput microRNA (miRNA)-silencing screen combined with functional readouts for mitochondrial oxidative capacity in C2C12 myocytes, we previously identified 19 miRNAs as putative regulators of skeletal muscle mitochondrial metabolism. In the current study, we highlight miRNA-204-5p, identified from this screen, and further studied its role in the regulation of skeletal muscle mitochondrial function. Following silencing of miRNA-204-5p in C2C12 myotubes, gene and protein expression were assessed using quantitative polymerase chain reaction, microarray analysis, and western blot analysis, while morphological changes were studied by confocal microscopy. In addition, miRNA-204-5p expression was quantified in human skeletal muscle biopsies and associated with in vivo mitochondrial oxidative capacity. Transcript levels of PGC-1α (3.71-fold; p <.01), predicted as an miR-204-5p target, as well as mitochondrial DNA copy number (p <.05) and citrate synthase activity (p =.06) were increased upon miRNA-204-5p silencing in C2C12 myotubes. Silencing of miRNA-204-5p further resulted in morphological changes, induced gene expression of autophagy marker light chain 3 protein b (LC3B; q =.05), and reduced expression of the mitophagy marker FUNDC1 (q =.01). Confocal imaging revealed colocalization between the autophagosome marker LC3B and the mitochondrial marker OxPhos upon miRNA-204-5p silencing. Finally, miRNA-204-5p was differentially expressed in human subjects displaying large variation in oxidative capacity and its expression levels associated with in vivo measures of skeletal muscle mitochondrial function. In summary, silencing of miRNA-204-5p in C2C12 myotubes stimulated mitochondrial biogenesis, impacted on cellular morphology, and altered expression of markers related to autophagy and mitophagy. The association between miRNA-204-5p and in vivo mitochondrial function in human skeletal muscle further identifies miRNA-204-5p as an interesting modulator of skeletal muscle mitochondrial metabolism.</p
Антицитрулінові антитіла в діагностиці артритів у дітей
Віходячи з проведеного дослідження, описаного в роботі, можна дійти висновку, що серед дітей із різними формами артритів тільки 4,8% пацієнтів були серопозитивними за РФ, та 23,8% дітей – за рівнем АЦЦП. Прогнастичне значення підвищеного рівня АЦЦП у дітей із РеА полягає в високій вірогідності розвитку ЮРА, що обумовлює більш ретельне їх спостереження із застосуванням індивідуальних схем профілактичного лікування.
При цитуванні документа, використовуйте посилання http://essuir.sumdu.edu.ua/handle/123456789/1128
Angptl4 Protects against Severe Proinflammatory Effects of Saturated Fat by Inhibiting Fatty Acid Uptake into Mesenteric Lymph Node Macrophages
SummaryDietary saturated fat is linked to numerous chronic diseases, including cardiovascular disease. Here we study the role of the lipoprotein lipase inhibitor Angptl4 in the response to dietary saturated fat. Strikingly, in mice lacking Angptl4, saturated fat induces a severe and lethal phenotype characterized by fibrinopurulent peritonitis, ascites, intestinal fibrosis, and cachexia. These abnormalities are preceded by a massive acute phase response induced by saturated but not unsaturated fat or medium-chain fat, originating in mesenteric lymph nodes (MLNs). MLNs undergo dramatic expansion and contain numerous lipid-laden macrophages. In peritoneal macrophages incubated with chyle, Angptl4 dramatically reduced foam cell formation, inflammatory gene expression, and chyle-induced activation of ER stress. Induction of macrophage Angptl4 by fatty acids is part of a mechanism that serves to reduce postprandial lipid uptake from chyle into MLN-resident macrophages by inhibiting triglyceride hydrolysis, thereby preventing macrophage activation and foam cell formation and protecting against progressive, uncontrolled saturated fat-induced inflammation
HILPDA Uncouples Lipid Droplet Accumulation in Adipose Tissue Macrophages from Inflammation and Metabolic Dysregulation
Obesity leads to a state of chronic, low-grade inflammation that features the accumulation of lipid-laden macrophages in adipose tissue. Here, we determined the role of macrophage lipid-droplet accumulation in the development of obesity-induced adipose-tissue inflammation, using mice with myeloid-specific deficiency of the lipid-inducible HILPDA protein. HILPDA deficiency markedly reduced intracellular lipid levels and accumulation of fluorescently labeled fatty acids. Decreased lipid storage in HILPDA-deficient macrophages can be rescued by inhibition of adipose triglyceride lipase (ATGL) and is associated with increased oxidative metabolism. In diet-induced obese mice, HILPDA deficiency does not alter inflammatory and metabolic parameters, despite markedly reducing lipid accumulation in macrophages. Overall, we find that HILPDA is a lipid-inducible, physiological inhibitor of ATGL-mediated lipolysis in macrophages and uncouples lipid storage in adipose tissue macrophages from inflammation and metabolic dysregulation. Our data question the contribution of lipid droplet accumulation in adipose tissue macrophages in obesity-induced inflammation and metabolic dysregulation.</p
- …