1,057 research outputs found

    The effect of distance on reaction time in aiming movements

    Get PDF
    Target distance affects movement duration in aiming tasks but its effect on reaction time (RT) is poorly documented. RT is a function of both preparation and initiation. Experiment 1 pre-cued movement (allowing advanced preparation) and found no influence of distance on RT. Thus, target distance does not affect initiation time. Experiment 2 removed pre-cue information and found that preparing a movement of increased distance lengthens RT. Experiment 3 explored movements to targets of cued size at non-cued distances and found size altered peak speed and movement duration but RT was influenced by distance alone. Thus, amplitude influences preparation time (for reasons other than altered duration) but not initiation time. We hypothesise that the RT distance effect might be due to the increased number of possible trajectories associated with further targets: a hypothesis that can be tested in future experiments

    Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games

    Get PDF
    Biodiversity is essential to the viability of ecological systems. Species diversity in ecosystems is promoted by cyclic, non-hierarchical interactions among competing populations. Such non-transitive relations lead to an evolution with central features represented by the `rock-paper-scissors' game, where rock crushes scissors, scissors cut paper, and paper wraps rock. In combination with spatial dispersal of static populations, this type of competition results in the stable coexistence of all species and the long-term maintenance of biodiversity. However, population mobility is a central feature of real ecosystems: animals migrate, bacteria run and tumble. Here, we observe a critical influence of mobility on species diversity. When mobility exceeds a certain value, biodiversity is jeopardized and lost. In contrast, below this critical threshold all subpopulations coexist and an entanglement of travelling spiral waves forms in the course of temporal evolution. We establish that this phenomenon is robust, it does not depend on the details of cyclic competition or spatial environment. These findings have important implications for maintenance and evolution of ecological systems and are relevant for the formation and propagation of patterns in excitable media, such as chemical kinetics or epidemic outbreaks.Comment: Final submitted version; the printed version can be found at http://dx.doi.org/10.1038/nature06095 Supplementary movies are available at http://www.theorie.physik.uni-muenchen.de/lsfrey/images_content/movie1.AVI and http://www.theorie.physik.uni-muenchen.de/lsfrey/images_content/movie2.AV

    A note on the propagation of quantized vortex rings through a quantum turbulence tangle:energy transport or energy dissipation?

    Get PDF
    We investigate quantum vortex ring dynamics at scales smaller than the inter-vortex spacing in quantum turbulence. Through geometrical arguments and high-resolution numerical simulations, we examine the validity of simple estimates for the mean free path and the structure of vortex rings post-reconnection. We find that a large proportion of vortex rings remain coherent objects where approximately 75% of their energy is preserved. This leads us to consider the effectiveness of energy transport in turbulent tangles. Moreover, we show that in low density tangles, appropriate for the ultra-quantum regime, ring emission cannot be ruled out as an important mechanism for energy dissipation. However at higher vortex line densities, typically associated with the quasi-classical regime, loop emission is expected to make a negligible contribution to energy dissipation, even allowing for the fact that our work shows rings can survive multiple reconnection events. Hence the Kelvin wave cascade seems the most plausible mechanism leading to energy dissipatio

    Depressive symptom trajectories among girls in the juvenile justice system: 24-month outcomes of an RCT of Multidimensional Treatment Foster Care

    Get PDF
    Youth depression is a significant and growing international public health problem. Youth who engage in high levels of delinquency are at particularly high risk for developing problems with depression. The present study examined the impact of a behavioral intervention designed to reduce delinquency (Multidimensional Treatment Foster Care; MTFC) compared to a group care intervention (GC; i.e., services as usual) on trajectories of depressive symptoms among adolescent girls in the juvenile justice system. MTFC has documented effects on preventing girls' recidivism, but its effects on preventing the normative rise in girls' depressive symptoms across adolescence have not been examined. This indicated prevention sample included 166 girls (13-17 years at T1) who had at least one criminal referral in the past 12 months and who were mandated to out-of-home care; girls were randomized to MTFC or GC. Intent-to-treat analyses examined the main effects of MTFC on depression symptoms and clinical cut-offs, and whether benefits were greatest for girls most at risk. Depressive symptom trajectories were specified in hierarchical linear growth models over a 2 year period using five waves of data at 6 month intervals. Depression clinical cut-off scores were specified as nonlinear probability growth models. Results showed significantly greater rates of deceleration for girls in MTFC versus GC for depressive symptoms and for clinical cut-off scores. The MTFC intervention also showed greater benefits for girls with higher levels of initial depressive symptoms. Possible mechanisms of effect are discussed, given MTFC's effectiveness on targeted and nontargeted outcomes. © 2013 Society for Prevention Research

    Climate change adaptation in European river basins

    Get PDF
    This paper contains an assessment and standardized comparative analysis of the current water management regimes in four case-studies in three European river basins: the Hungarian part of the Upper Tisza, the Ukrainian part of the Upper Tisza (also called Zacarpathian Tisza), Alentejo Region (including the Alqueva Reservoir) in the Lower Guadiana in Portugal, and Rivierenland in the Netherlands. The analysis comprises several regime elements considered to be important in adaptive and integrated water management: agency, awareness raising and education, type of governance and cooperation structures, information management and—exchange, policy development and—implementation, risk management, and finances and cost recovery. This comparative analysis has an explorative character intended to identify general patterns in adaptive and integrated water management and to determine its role in coping with the impacts of climate change on floods and droughts. The results show that there is a strong interdependence of the elements within a water management regime, and as such this interdependence is a stabilizing factor in current management regimes. For example, this research provides evidence that a lack of joint/participative knowledge is an important obstacle for cooperation, or vice versa. We argue that there is a two-way relationship between information management and collaboration. Moreover, this research suggests that bottom-up governance is not a straightforward solution to water management problems in large-scale, complex, multiple-use systems, such as river basins. Instead, all the regimes being analyzed are in a process of finding a balance between bottom-up and top–down governance. Finally, this research shows that in a basin where one type of extreme is dominant—like droughts in the Alentejo (Portugal) and floods in Rivierenland (Netherlands)—the potential impacts of other extremes are somehow ignored or not perceived with the urgency they might deserv

    Regions identity between the genome of vertebrates and non-retroviral families of insect viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The scope of our understanding of the evolutionary history between viruses and animals is limited. The fact that the recent availability of many complete insect virus genomes and vertebrate genomes as well as the ability to screen these sequences makes it possible to gain a new perspective insight into the evolutionary interaction between insect viruses and vertebrates. This study is to determine the possibility of existence of sequence identity between the genomes of insect viruses and vertebrates, attempt to explain this phenomenon in term of genetic mobile element, and try to investigate the evolutionary relationship between these short regions of identity among these species.</p> <p>Results</p> <p>Some of studied insect viruses contain variable numbers of short regions of sequence identity to the genomes of vertebrate with nucleotide sequence length from 28 bp to 124 bp. They are found to locate in multiple sites of the vertebrate genomes. The ontology of animal genes with identical regions involves in several processes including chromatin remodeling, regulation of apoptosis, signaling pathway, nerve system development and some enzyme-like catalysis. Phylogenetic analysis reveals that at least some short regions of sequence identity in the genomes of vertebrate are derived the ancestral of insect viruses.</p> <p>Conclusion</p> <p>Short regions of sequence identity were found in the vertebrates and insect viruses. These sequences played an important role not only in the long-term evolution of vertebrates, but also in promotion of insect virus. This typical win-win strategy may come from natural selection.</p

    Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line

    Get PDF
    Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain
    corecore