1,297 research outputs found

    Novel resources: opportunities for and risks to species conservation

    Get PDF
    During the Anthropocene, ongoing rapid environmental changes are exposing many species to novel resources. However, scientists’ understanding of what novel resources are and how they impact species is still rudimentary. Here, we used a resource‐based approach to explore novel resources. First, we conceptualized novel resource use by species along two dimensions of novelty: namely, ecosystem novelty and resource novelty. We then examined characteristics that influence a species’ response to a novel resource and how novel resources can affect individuals, populations, species, and communities. In addition, we discuss potential management complications associated with novel resource use by threatened species. As conservation and management embrace global environmental change, it is critical that ecologists improve the current understanding of the opportunities and risks that novel resources present to species conservation

    Stoichiometry control of magnetron sputtered Bi2_2Sr2_2Ca1x_{1-x}Yx_xCu2_2Oy_y (0\lex\le0.5) thin film, composition spread libraries: Substrate bias and gas density factors

    Full text link
    A magnetron sputtering method for the production of thin-film libraries with a spatially varying composition, x, in Bi2Sr2Ca1-xYxCu2Oy (0<=x<=0.5) has been developed. Two targets with a composition of Bi2Sr2YCu2O_{8.5 + \delta} and Bi_2Sr_2CaCu_2O_{8 + \delta} are co-sputtered with appropriate masks. The target masks produce a linear variation in opposite, but co-linear radial direction, and the rotation speed of the substrate table is sufficient to intimately mix the atoms. EDS/WDS composition studies of the films show a depletion of Sr and Bi that is due to oxygen anion resputtering. The depletion is most pronounced at the centre of the film (i.e. on-axis with the target) and falls off symmetrically to either side of the 75 mm substrate. At either edge of the film the stoichiometry matches the desired ratios. Using a 12 mTorr process gas of argon and oxygen in a 2:1 ratio, the strontium depletion is corrected. The bismuth depletion is eliminated by employing a rotating carbon brush apparatus which supplies a -20 V DC bias to the sample substrate. The negative substrate bias has been used successfully with an increased chamber pressure to eliminate the resputtering effect across the film. The result is a thin film composition spread library with the desired stoichiometry.Comment: 16 pages, 12 figures, 4 tables, submitted to Physica C - Superconductivity (April 15, 2005), elsart.st

    Running couplings for the simultaneous decoupling of heavy quarks

    Full text link
    Scale-invariant running couplings are constructed for several quarks being decoupled together, without reference to intermediate thresholds. Large-momentum scales can also be included. The result is a multi-scale generalization of the renormalization group applicable to any order. Inconsistencies in the usual decoupling procedure with a single running coupling can then be avoided, e.g. when cancelling anomalous corrections from t,b quarks to the axial charge of the proton.Comment: 12 pages, 1 figure, version to appear in PLB. Pages 8-11 and Fig. 1 are new, with consequent changes to the abstract, page 2, and the references. We show that our multi-scale renormalization group is needed to achieve anomaly cancellation in t,b decoupling from the weak neutral current, and extend it to include large moment

    A class of ansatz wave functions for 1D spin systems and their relation to DMRG

    Full text link
    We investigate the density matrix renormalization group (DMRG) discovered by White and show that in the case where the renormalization eventually converges to a fixed point the DMRG ground state can be simply written as a ``matrix product'' form. This ground state can also be rederived through a simple variational ansatz making no reference to the DMRG construction. We also show how to construct the ``matrix product'' states and how to calculate their properties, including the excitation spectrum. This paper provides details of many results announced in an earlier letter.Comment: RevTeX, 49 pages including 4 figures (macro included). Uuencoded with uufiles. A complete postscript file is available at http://fy.chalmers.se/~tfksr/prb.dmrg.p

    On the relation of Thomas rotation and angular velocity of reference frames

    Get PDF
    In the extensive literature dealing with the relativistic phenomenon of Thomas rotation several methods have been developed for calculating the Thomas rotation angle of a gyroscope along a circular world line. One of the most appealing concepts, introduced in \cite{rindler}, is to consider a rotating reference frame co-moving with the gyroscope, and relate the precession of the gyroscope to the angular velocity of the reference frame. A recent paper \cite{herrera}, however, applies this principle to three different co-moving rotating reference frames and arrives at three different Thomas rotation angles. The reason for this apparent paradox is that the principle of \cite{rindler} is used for a situation to which it does not apply. In this paper we rigorously examine the theoretical background and limitations of applicability of the principle of \cite{rindler}. Along the way we also establish some general properties of {\it rotating reference frames}, which may be of independent interest.Comment: 14 pages, 2 figure

    Rotating Resonator-Oscillator Experiments to Test Lorentz Invariance in Electrodynamics

    Full text link
    In this work we outline the two most commonly used test theories (RMS and SME) for testing Local Lorentz Invariance (LLI) of the photon. Then we develop the general framework of applying these test theories to resonator experiments with an emphasis on rotating experiments in the laboratory. We compare the inherent sensitivity factors of common experiments and propose some new configurations. Finally we apply the test theories to the rotating cryogenic experiment at the University of Western Australia, which recently set new limits in both the RMS and SME frameworks [hep-ph/0506074].Comment: Submitted to Lecture Notes in Physics, 36 pages, minor modifications, updated list of reference

    Recent Experimental Tests of Special Relativity

    Full text link
    We review our recent Michelson-Morley (MM) and Kennedy-Thorndike (KT) experiment, which tests Lorentz invariance in the photon sector, and report first results of our ongoing atomic clock test of Lorentz invariance in the matter sector. The MM-KT experiment compares a cryogenic microwave resonator to a hydrogen maser, and has set the most stringent limit on a number of parameters in alternative theories to special relativity. We also report first results of a test of Lorentz invariance in the SME (Standard Model Extension) matter sector, using Zeeman transitions in a laser cooled Cs atomic fountain clock. We describe the experiment together with the theoretical model and analysis. Recent experimental results are presented and we give a first estimate of components of the c~p\tilde{c}^p parameters of the SME matter sector. A full analysis of systematic effects is still in progress, and will be the subject of a future publication together with our final results. If confirmed, the present limits would correspond to first ever measurements of some c~p\tilde{c}^p components, and improvements by 11 and 14 orders of magnitude on others.Comment: 29 pages. Contribution to Springer Lecture Notes, "Special Relativity - Will it survive the next 100 years ?", Proceedings, Potsdam, 200
    corecore